DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

Utility Consumption Monitoring for Sustainability

From:automation | Author:H | Time :2024-11-27 | 154 Browse: | Share:

Utility Consumption Monitoring for Sustainability

Improving operational efficiency is a longtime goal of process control and industrial applications, but today’s rising utility costs and widespread eco-conscious corporate initiatives are placing a new spotlight on energy savings in production facilities across all industries. Central to both operational efficiency and energy savings are the ability to squeeze as much production or output from the smallest net input possible, while maintaining high safety, quality, reliability and uptime.

Utilities can be broadly placed into two camps. Tier-one utilities are typically purchased directly from an external supplier, including electricity, water, liquid fuel and various industrial gases. These are used directly to power many operational components within a facility, but additional general-purpose products are also required to run particular processes such as purging or cooling. These tier-two utilities—created from tier-one supplies—include steam, compressed air, treated water and heat.

The use of utilities is directly correlated with profits and carbon footprint, incentivizing companies to minimize consumption, while upholding safety and quality. Utilities are a necessary expenditure, but there are almost always opportunities for savings, which can help companies reduce operational costs, increase product margins and meet ambitious environmental stewardship targets. However, proper energy management requires accurate data capture and appropriate analysis.

None of this is possible without reliable instrumentation to monitor plant processes and utility consumption. This information empowers plant personnel to establish baselines, monitor process efficiency, identify opportunities for savings and optimize operations.


Reduce operational costs to become more competitive

Organizations can reduce their operating costs by saving energy wherever possible, thereby increasing competitiveness. However, many companies are still unaware of how much energy they actually consume. This and other issues can be resolved by implementing an energy management system with the right instrumentation.

There are many areas for potential savings in steam, compressed air, heating, cooling and industrial gas usage. These are common process inputs for plant operation in many industry sectors, and vast quantities of energy are expended in the production and distribution of these utilities. This is why identifying opportunities for consumption reduction in plant processes is so critical.

Steam, for example, drives heat exchangers, distillation column reboilers, and similar applications because it is an efficient and controllable mechanism for delivering energy exactly where it is needed. But it is also expensive to produce and distribute, calling for careful measurement and control.

Comprehensive utility monitoring and optimization can regularly reduce energy consumption by 5 to 15 percent, but this requires establishing the right energy performance indicators (EnPIs) and making appropriate process operational tweaks or investments. All reduction opportunities depend on instrumentation that can objectively quantify energy flows, energy consumption and process data according to ISO 50001 and ISO 50006, with related systems presenting this data in terms of EnPIs.


Guiding standards

ISO 50001 is a universal energy management standard, specifying the establishment of EnPIs for setting up an energy management system. These indicators must be regularly reported, checked and compared against an energy baseline (EnB) created prior to introducing measures for increased energy efficiency (Figure 1).

On the basis of this information, potential areas for savings are evaluated, and improvement measures can be initiated for single processes as well as throughout buildings, plants, or entire factory complexes.

The ISO 50006 standard provides stepby-step guidance to companies for defining robust EnPIs and an accurate EnB for later comparison. The standard also contains several real-life examples, which are helpful because it can be difficult to initially identify relevant variables in an energy system from which to determine EnPIs. Such variables include weather conditions, balance period, plant size, production variations and energy sources, to name a few.

Common EnPI examples include:

  • Total primary energy consumption (MWh/ year)

  • Improvement in energy intensity for the baseline year (percent)

  • Adjustment for primary energy demand (MWh/year)

  • Energy savings for the current year (MWh/ year)

  • Energy savings since the baseline year (MWh/year)

  • Improvement in energy intensity for the current year (percent)

  • Total consumed primary energy (MJ/year)

  • Electricity, water or fuel consumption (total values, peak loads, etc.)

  • Specific energy consumption, i.e., energy consumption per quantity of produced media, like compressed air (kWh/Nm3), steam (MJ/t) and hot water (kW/kg)

  • Efficiency of steam boilers (percent).


Figure 1: Defining effective energy performance indicators and comparing results against an energy baseline enables organizations to see the results of their energy efficiency enhancements.

  • ALSTOM COP232.2 VME A32/D32, 029.232 446 controller unit
  • GE 151X1235DB15SA01 Gas turbine controller
  • Abaco VP869 FPGA Card
  • Abaco VP868 FPGA Card
  • Abaco VP780 FPGA Card
  • Abaco VP680 FPGA Card
  • PC821 PCIe FPGA Card
  • Abaco PC820 FPGA Card
  • Abaco PC720 FPGA Card
  • Abaco FlexVPX Backplane
  • Abaco VP880 / VP881
  • Abaco VP889 FPGA Board
  • Abaco VP430 RFSoC Board
  • Abaco VP460 Direct RF Processing System
  • Abaco VP431 RFSoC Board
  • Abaco VP461 6U VPX Xilinx UltraScale
  • Abaco VP891 3U VPX FPGA Processing Card
  • Abaco TM-683 2 PMC rear panel I/O transition module for 6U CPCI
  • Abaco CPCI-100A-FP 2-slot IndustryPack carrier for 3U CPCI systems
  • Abaco BIO-4 Rear transition card for the CPCI-200A IP carrier
  • Abaco VME-4116 VME Analog I/O Output Boards
  • Abaco VME-4140 VME Analog I/O Output Boards
  • Abaco VME-3122B VME Analog I/O Input Boards
  • Abaco VME-3113B Scanning 12-bit Analog-to-Digital Converter with Built-in-Test
  • Abaco Vme-4132 VME Analog I/O Output board
  • N-Tron® NT24K-14FXE6-SC-80 Managed 14-Port Gigabit Industrial Ethernet Switch
  • N-Tron® 7012FXE2-SC-40 Managed 12-port Industrial Ethernet Switch
  • N-Tron® NT24K-11GX3-SC-PT Managed 11-Port Gigabit Industrial Ethernet Switch
  • N-Tron® NT24K-14FXE6-SC-15 Managed 14-Port Gigabit Industrial Ethernet Switch
  • N-Tron® 7018FXE2-SC-15 Managed 18-port Industrial Ethernet Switch
  • N-Tron® NT24k 24-Port Rackmount Gigabit Managed Industrial Ethernet Switch
  • N-Tron® NT24k 24-Port, Dual Redundant VDC Power Input, Rackmount Gigabit Managed Industrial Ethernet Switc
  • N-Tron® NT24K-10FX2-SC Managed 10-Port Industrial Ethernet
  • N-Tron® NT24K-12SFP-DM4 Managed 12-Port Gigabit Industrial Ethernet Switch
  • N-Tron® NT24k 16-Port, Single Redundant VDC Power Input
  • N-tron SLX-6ES-5SC Unmanaged 6-port industrial Ethernet switch
  • NT24k® 10FX2-POE Managed PoE+ Gigabit Ethernet Switch
  • N-Tron® 105FXE-SC-15-POE-MDR Unmanaged 5-port PoE Switch
  • Sixnet® SL-8ES-1 Unmanaged 8-port Industrial Ethernet Switch
  • N-Tron® 106FX2-SC-MDR Unmanaged 6-port Industrial Ethernet Switch
  • Sixnet® SLX-9ES-3SC Unmanaged 9-port Industrial Ethernet Switch
  • N -Tron® 710FXE2-ST-80 Managed 10-port Industrial Ethernet Switch
  • N -Tron® 712FXE4-SC-15-HV Managed 12-port Industrial Ethernet Switch
  • N -Tron® 712FXE4-ST-15-HV Managed 12-port Industrial Ethernet Switch
  • N -Tron® 709FXE-SC-40 Managed 9-port Industrial Ethernet Switch
  • ABB IEMMU21 Module Mounting Unit
  • ABB CMA120 3DDE300400 Basic Controller Panel Unit
  • Bently Nevada 2300/20-RU 2300/20-CN Monitoring controller
  • A-B 4100-234-R IMC™ S Class Compact Motion Controllers
  • B&R Power Panel 300/400
  • ADLINK cPCI-3840 Processor module
  • ACQUISITIONLOGICAL81G -2
  • HIMA K1412B PLC Module
  • IS200VTCCH1CBD GE Speedtronic Turbine Control PCB board
  • TRICONEX 4200 Digital Output Module
  • DEIF SCM-1 PCB CARD Module
  • HIMA F3DIO20802 controller plc F3DIO20802
  • HIMA B5233 PLC Module
  • HIMA B5322 PLC Module
  • HIMA F7105A PLC Module
  • HIMA F7150 PLC Module
  • HIMA Z7308 PLC Module
  • HIMA F60 PS01
  • TRICONEX 4409 PLC Module
  • F8651X HIMA Central module F8651X
  • HIMA-6E-B HIMA-6E-B Large System Controller
  • HIMA P8403 PLC Module
  • F8621A HIMA communication module
  • IS200VRTDH1D GE Mark VI Printed Circuit Board
  • ABB NIACO2 PLC Module
  • ABB NIAMO1 PLC Module
  • HIMA F8652 98465266 PLC Module
  • F8652X HIMA Central module
  • HIMA 62100
  • HIMA 99-7105233 B5233-1 NSMP
  • ABBSPAD 346 C3-AA
  • ABBREF543KM127BABB
  • ABB 0-63007 M003742626
  • Abb FET3251A0P1B3C0H2M
  • ABB 3HAB8800-1
  • ABB 3AUA266001B166
  • ABB3HNM07686-1
  • ABB PQF4-3 TAS
  • Honeywell 30735863-502 - SWITCH
  • Honeywell TK-CCR014 - REDUNDANT NET INTERFACE NEW ORIGINAL FREE EXPEDITED SHIPPING/
  • Honeywell 51403165-400 - new 51403165400/
  • Honeywell318-049-001 quot100 Batteries(Japan Liion2Ah14.8Wh)INTERMEC/ PR2,PR3 P/N
  • Honeywell FC-PSU-UNI2450U - Power Supply
  • Honeywell 965-0676-010 - WARNING COMPUTER SV
  • Honeywell 51403519-160 - Module
  • Honeywell 107843 - HOUSING CARBON FILE P/N NE COND # 11438 (4)
  • Honeywell VR434VA5009-1000 - Brand new in box Condensing boiler valve DHL fast shipping
  • Honeywell SPXCDALMFX - plc new FREE EXPEDITED SHIPPING/
  • Honeywell BCM-PWS - BCM-ETH BCM-MS/TP BCM-MS/TP Network controller setFedEx or DHL
  • Honeywell YSTR12D-22/C/-2J0DFA/BE/400/T/-CM.HO.TG.SB.SM,ZS,F1,LP,/FX/,1C-BT - UNMP
  • Honeywell IWS-1603-HW - 90-250VAC 1.0A UNMP
  • Honeywell 51304386-150 - MEASUREX Factory Packed
  • Honeywell CC-PFB401 - / CCPFB401 (NEW IN BOX)
  • Honeywell 50071726 - St 800 Series Pressure Transmitter Remote Diaphragm 11-42VDC
  • Honeywell 621-2150 - / 6212150 (NEW NO BOX)
  • Honeywell 80360206-001 - USED YAMATAKE CLI BOARD
  • Honeywell BMDX001A-001 - ACCURAY / BOARD BMDX001A001
  • Honeywell XCL8010A - New CPU Controller.
  • Honeywell PGM-7320 - 1PCS NEW Rae Systems MiniRAE 3000 Portable VOC Monitor#XR
  • Honeywell BK-G40 - U65 *FULL INSTALLATION* Gas Meter 3?± Inlet/Outlet Spool NEW UNUSED
  • Honeywell DM106-0-B-00-0-R-1-00000-000-E0 - DPR100 250V NSNP
  • Honeywell KFD840 - PRIMARY FLIGHT DISPLAY CORE PN: 066-01206-0104
  • Honeywell 51401914-100 - 51400996-100
  • Honeywell C7012A1145 - 1PC New UV Flame Detector Expedited Shipping
  • Honeywell OV210 - Baxter Bakery Oven Igition Control. For DRO. 00-616973 NEW
  • Honeywell 51304431-125 - 1PC New /51304431125 1 year warranty#XR
  • Honeywell QPP-0002 - Quad Processor Module / 5 Vdc / Massima 1.2A/24Vdc/max.25mA
  • Honeywell QPP-0002 - Quad Processor Module / 5Vdc / Max. 1.2A/24Vdc/max.25mA
  • Honeywell 8C-PCNT02 - 514543363-275 module
  • Honeywell DPCB21010002 - Tata Printed Circuit Board
  • Honeywell DPCB21010002 - Tata Printed Circuit Board Rev: 0
  • Honeywell 001649-M5T028 - Tata Printed Circuit Board Rev: 0
  • Honeywell YSTD924-(J2A)-00000-FF,W3,TP,TG,SS - NSFS
  • Honeywell XF523-A - / XF523A (NEW IN BOX)
  • Honeywell TK-PRS021 - NEW IN STOCK ship by UPS
  • Honeywell 2MLR-AC22 - " 2mlr-dbsf,2mlf-ad4s,2mlf-dc4s,2mlr-ac22 Rack"
  • Honeywell 9436610 - MEASUREX NSMP
  • Honeywell RT10A-L0N-18C12S0E - RT10A.WLAN.IN.6803.CAM.STD.GMS
  • Honeywell 51305896-200 - P:C1 Rev D Nim Modem - FAST SHIP BY Fedex
  • Honeywell TK-FTEB01 - PCL module Brand New Fast Shipping By DHL
  • Honeywell 8694500 - Measurex Control Processor Module
  • Honeywell DR4500 - Truline and DR4300 Circular Chart Recorder
  • Honeywell EC-7850-A-1122 - / EC7850A1122 (NEW IN BOX)