DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

Edge Computing Fundamentals

来源:automation | 作者:ABB | 发布时间 :152 days ago | 50 次浏览: | Share:
Edge Computing Fundamentals
Edge Computing Fundamentals

In the realm of information technology (IT), edge computing is a concept that has revolutionized the way data and computing tasks are processed. Traditionally, these tasks were processed in a centralized location on a local server. Edge computing has decentralized this process, which moves resource-heavy computing tasks to the cloud while using the edge devices on the network for simple calculations and data orchestration. This shift has been enabled by the Internet of Things (IoT) using sensor data and cloud computing, which are becoming more cost effective.

Edge computing brings the power and advantages of computing closer to where data is created and acted upon. This proximity improves efficiency, security and reduces bandwidth requirements. Edge devices and sensors, which are the sources of data generation and collection, often lack the compute and storage resources needed to perform advanced analytics. This is where edge computing comes into play, which can handle real-time data processing for important smart factory applications like predictive maintenance on premise in facilities.

Cloud computing, on the other hand, is performed in a remote environment hosted by public cloud companies like Microsoft, Amazon or IBM. This environment supports more data-intensive and less time-critical processes. Public cloud providers increasingly focus on a hybrid cloud model, according to Forbes. This model allows manufacturers to store and analyze their proprietary internal process information locally on their own servers, while offloading resource-intensive applications like machine learning to a public cloud to take advantage of scale and cost efficiencies.


Edge computing supports Industry 4.0/smart manufacturing

Edge computing is a pivotal architecture in supporting Industry 4.0 and smart manufacturing initiatives. Factories that deploy edge platforms experience faster network speeds and low latency, which significantly contribute to better decision making and production optimization. This ultimately improves return on investment.

By using edge and cloud computing, manufacturers improve productivity and identify revenue opportunities from the efficiencies and capabilities of smart systems. In particular, real-time overall equipment effectiveness (OEE) visualization tools provide full visibility into every aspect of a factory’s efficiency.

OEE—a key performance indicator (KPI) calculated to measure machine and overall manufacturing performance—was invented in the 1960s by Seiichi Nakajima, the founder of the Total Productive Maintenance (TPM) system. It is not a static, individual measurement of success, failure or mediocrity, but rather a living metrics combination that points operational technologists to the levers they must pull to improve business performance.

The first and most common challenge for an effective OEE implementation is data collection. Good data analytics start with good data availability. For manufacturing environments that use hundreds of types of machines and gather data from multiple industrial protocols, real-time data collection from machines is critical.

Advanced industrial IoT (IIoT) data management edge platforms provide this. Most offer core capabilities that include real-time access to operational data, data rationalization to identify relevant points, data transformation into usable formats and speedy delivery for ingestion by cloud and middleware (operational technology (OT) and IT systems.

Edge computing is performed at or near devices and offers more security, lower latency and more bandwidth capacity and reliability than cloud services. The most efficient IIoT edge platforms for data management include a large library of protocol converters that enable machine data collection using open and private protocols such as OPC UA and OPC DA, Modbus, MTConnect, BACnet, EtherNet/IP and Profinet for networked machines. The edge solution makes data collection a simple process, particularly for choosing the driver and appointing it to the IP address. All the tags are auto enumerated.

For machines requiring analog or digital input/output (I/O) data collection or external instrumentation, edge platforms can collect data from sensors or from a hardware adaptor for legacy machines. With the machines connected, algorithms can be set up by mapping the variables to a trigger. The logic was previously written in traditional programming languages. However, newer platforms provide a low- or no-code environment for a visual logic workflow to facilitate application creation, maintenance and calculations. OEE calculations can be done machine by machine and consolidated by line, shift and plant level to improve management visibility.

Alarm functions for monitoring specific machine and process conditions can be added and customized to automated actions.

With robust OT/IT edge integration software, it is possible to automate machine setup and reduce setup time, as the software’s low latency is critical to avoid hidden downtime in the machine. With improved process visibility, managers have better information for planned stops and can calculate the machine OEE and schedule maintenance based on machine information.

Every manufacturer knows that unscheduled downtime is expensive. If one machine component fails, it can halt the entire production system, which could result in the loss of production time, raw materials and more.

Edge platforms can be deployed to learn expected machine behavior and fully automate preventive maintenance with triggers that identify anomalies in the production cycle such as power consumption, vibration and noise and temperature. Given that the most common challenge for smart factories is usually interoperability with infrastructure implementation, it is well worth prioritizing IIoT architecture that uses edge intelligence to integrate legacy machines and sensors into IT systems.


Use cases

As previously mentioned, the fundamental purpose of edge computing is to collect data from edge devices or “things.” But an edge computing platform offers several other use cases as well such as:

  • Executing business/application specific logic: As edge software runs near the devices, it makes sense to execute logic that uses data generated at the edge and makes real-time decisions. This ensures fast response and less resource usage compared to sending all data to cloud for decision making. The logic itself depends on the application. For example, consider a scenario where a chiller provides coolant to all shop floor machines. Edge software will decide chiller output level based on current load and send commands to the chiller.

  • Local visualization: Edge software can provide local visualization such as a human-machine interface (HMI) for plant people. Examples include:

    • Viewing production information

    • Viewing output of logic executed on edge

    • Viewing operator-provided downtime reasons.

  • Sending control commands: Control commands can originate from following sources:

    • As a result of logic executed in edge software.

    • As a result of logic executed in cloud server such as data analytics.

    • User-initiated commands such as starting or stopping a pump.

One of my favorites is the “machine interlock” feature. If a machine is down for more than a defined threshold, edge software will switch on an interlock output that prevents the operator from starting the machine unless they have entered a downtime reason.

  • Generating alerts: Edge software can generate alarms/alerts by evaluating data for various purposes. For example, perform continuous condition monitoring of devices and generate alerts for maintenance team.

  • Data transformation: Perform data transformation based on defined rules and send processed data to the cloud rather than raw data. This reduces data volume sent to the cloud and conserves bandwidth and cloud storage. For example, send average rather than raw data of parameters.

  • Send data to a third-party server: Sometimes data generated on the edge must be shared with third-party servers. The edge software is ideally suited for this purpose. It can do required data transformation and send data to the third-party server. For example, report emissions data to regulators.


Edge software architecture

The next decision is how the edge software should be architected, for example, what components it should offer one or more of the aforementioned use cases.

Figure 1 shows components in typical edge software. Each installation of the same edge software will have different components. Consider these examples:

  • Installation A uses OPC UA, EtherNet/IP drivers and edge processor 1.

  • Installation B uses Modbus TCP, Modbus RTU and OPC UA drivers; edge processor 1 and edge processor 2; and sends data to a 3rd party server.


Figure 1: Components in typical edge software.

Architecture of edge software must provide interfaces to plug in these different instances of components and have capability to orchestrate their execution. This is very critical. The individual instances of components will be developed using a base design or may be parameterized in some cases. An edge configuration tool allows users to define components that will go in a specific instance and configure them. The configuration tool normally runs in the cloud with a part of it running on the edge. This tool or a separate component handles device management and provisioning including over the air (OTA) updates. A key requirement is to ensure that edge software runs 24/7.
 


Edge computing in Industry 4.0

According to IoT Analytics, the number of connected IoT devices is expected to reach 14.4 billion by the end of 2022. Allied Market Research states that the global value of IoT in manufacturing products was $198.25 billion in 2020, with predictive maintenance applications commanding the largest share. Thanks in large part to advances in smart sensors and virtual and augmented reality, the demand for real-time asset monitoring will boost the overall value to $1,495.65 billion by 2030, at a compound annual growth rate of 22.6 percent from 2021.

With exponentially more IoT devices collecting, analyzing and processing more data and information, the need for edge computing can only increase in an effort to reduce latency and increase speed. With the edge orchestrating, aggregating and trimming data on the fly, companies will rely on the cloud for long-term storage and cost-efficient compute. The toughest decision corporations will face is choosing which data points are worth real-time analysis on premise, which need long-term storage and analysis in the cloud and, most importantly, which data needs no analysis at all.


The future of edge computing and Industry 4.0

Many experts believe enterprises will deploy edge platforms and 5G wireless communications together in the coming years. A recent article from The Enterprisers Project indicates that the “next big thing” will be private 5G networks. 5G adds ultra-reliable, low-latency communication (URLLC) that has previously only been offered on Class-C Ethernet technology.

With increased data transfer speeds, decreased latency and higher capacity of 5G technology, factories will be able to scale without relying on proprietary industrial Ethernet protocols via standard wired network infrastructures. Combining edge computing with 5G will allow more flexibility in on-premise deployments by extending the range and reach of data collection to assets normally unreachable through wired deployments or bandwidth constraints.

Artificial Intelligence (AI) solutions depend on edge computing and will continue to require an IoT platform to integrate legacy equipment into new and developing solutions. The importance of device level data acquisition will continue to be critical in scaling solutions across this heterogenous mix of complex IT and OT protocols in manufacturing and industrial environments.


  • GE Fanuc - IS200EXHSG3A High-Speed Relay Driver Terminal Board for Exciters
  • GE IS200TRLYH1BGF - Advanced Relay Termination Circuit Board for Industrial Control
  • GE A06B-6151-H075 - Spindle Amplifier Module High Precision Control for Industrial Applications
  • GE DS200TBQDG1A - Advanced Extension Analog Termination Board for Industrial Control Systems
  • GE IC697CMM742-HK - Advanced Ethernet Module for Industrial Automation
  • GE IC200CHS002 - Box-Style Input/Output Carrier
  • GE VME-MB-Z004 - MODULE Advanced Industrial Control Solutions
  • GE IS200ERDDH1ABB - High-Performance Circuit Board for Speedtronic System
  • GE IS210AEBIH3BE - Printed Circuit Board
  • GE MIWII - 1000E00HI00 High Precision Counter Module
  • GE Electric - IC693MDL931 Isolated Relay Output Module
  • GE Fanuc - IS215UCVEH2AE Advanced Gas Turbine Control System
  • GE 531X111PSHARG3 - Industrial Power Supply Card
  • GE DS200TCQCG1RJD - Power Supply Board for Industrial Control Systems
  • GE IC693PRG300 - G300 Hand-Held Programmer
  • GE FANUC - 78004654B High Performance Industrial PLC Module
  • GE A06B-6093-H101 - Servo Amplifier Unit Precision Control for Advanced Applications
  • GE DS200TCPDG2BEC - A Comprehensive Power Distribution Board for Industrial Control Systems
  • GE DS3800NPSJ1B1B - High-Performance Power Supply Board for Industrial Control Systems
  • GE GE - IS200GFOIH1A High-Performance Control Module for Industrial Automation
  • GE IS215ACLEH1AB - Original Equipment Manufacturer Control Module
  • GE Fanuc - F650BABF2G0IHI PLC Module High-Performance Control Core
  • GE DS200ADPBG1ABB - Precision Engineered Genius Adapter Module for Advanced Control Solutions
  • GE IS210HSLAH1ADE - High-Speed Serial Link Interface Circuit Board
  • GE IS215GFOIH1A/IS215GFOIH1AB/IS200GFOIH1A - Industrial Control Systems for Enhanced Performance & Reliability
  • GE CM415REBKH1B - Tuning Fork Crystal Unit for Industrial Control Systems
  • GE Fanuc - IC694MDL916 Advanced Programmable Automation Controller
  • GE Fanuc - SR469-P5-HI-A20 Motor Protection System Comprehensive Control for Large Motors
  • GE Electric - IC693ALG221 Affordable Industrial Control Module
  • GE Electric - DS200TCQRG1RFC Circuit Board Advanced IO Expansion Module
  • GE FANUC - IC694MDL740 Modular Control System Module
  • GE IC697MDL753 - Industrial Output Module Precision Control for Your Operation
  • GE DS3800HAFA1D - Industrial Control Module for Power Generation
  • GE DS200TCDAG1A - Advanced Digital I/O Board for Industrial Control
  • GE UR6TH - Module Digital Input/Output
  • GE FANUC - DS200SNPAH1ABB Advanced Gas Turbine Control Module
  • GE IS220PSCAH1A - IO Pack for Serial Communications
  • GE Fanuc - IC698PSA100E Durable Industrial Power Supply Module
  • GE IC693PWR322 - High-Performance Power Supply for Industrial Control Systems
  • GE FANUC - IC697CPM925 CPU MODULE Industrial Control Solution
  • GE IC3600SSLB1H1B - Gas Turbine Control Module
  • GE DS3800HPRB1A1A - Precision Pulse Rate Card for Industrial Control Systems
  • GE DS4820R20 - Relay Module (194B5704G1) Reliable Industrial Control Solution
  • GE IC698CHS009 - Rear Mounted Rack Industrial Control Module
  • GE IC694ALG392 - Analog Output Module for Industrial Control Systems
  • GE DS200TCDAH1BGD - Advanced I/O PC Board for Industrial Automation
  • GE Electric - DS200TCEAG1BTF Emergency Overspeed Board
  • GE IS420YAICS1B - Analog I/O Module for Industrial Control Applications
  • GE Fanuc - IC693PWR331CA High-Efficiency Power Supply for Industrial Control Systems
  • GE UR9NH - CPUUR PLC CPU Module
  • GE SR735-5-5-HI-485 - Relay
  • GE Fanuc - 0285A7595 MGM115 Programmable Logic Controller Module
  • GE Fanuc - IC200MDL102 Input Modules Advanced Control Solutions
  • GE M60K03HKHF8LH4CM8NP6EUXXW5C - Industrial Control Module
  • GE Industrial - Systems IS200BICIH1ADC PCB Board
  • GE IC200CPU001 - Advanced Microcontroller Module
  • GE DS200TCQCG1BJF - PLC Overflow Board
  • GE Fanuc - IS200TRPGH1B Terminal Board Advanced Control Solution for Industrial Automation
  • GE IC693CPU313LT - Advanced Series 90-30 PLC Controllers
  • GE Industrial - Controls 8601-FT-NI Field Terminal Module
  • GE IC200CHS001 - Industrial Control System I/O Carrier
  • GE IC693CHS397M - High-Performance Programmable Logic Controller Module
  • GE 0552N1QLG132A-01 - Control Module Advanced Industrial Automation Solution
  • GE A20B-1006-0270 - Keyboard Panel High-Performance Control Module
  • GE IS210AEAAH1BKE - Industrial Strength Mark VI PCB for Enhanced Turbine & Excitation Control Systems
  • GE Fanuc IC200UAL005 Versamax PLC - Industry-Leading Control Solution
  • GE IC693PWR330 - Industrial Power Supply
  • GE IC200ALG620 - Industrial Input Module
  • GE DS200SLCCG3ACC - & DS215DENCG3AZZ01A | Industrial Communication Board
  • GE DS3800HPIB - Industrial Grade Panel Interface Board for Turbine Control
  • GE DS200SDCIG2AFB - High-Performance SDCI Board for Industrial Automation
  • GE IS200MVREH1AAB - Advanced Control Board for Industrial Automation
  • GE DS3820RDMB - Control Card Precision in Automation
  • GE FANUC - VMIVME-7671-421000
  • GE DS200SLCCG3AGH - Advanced Industrial Control System
  • GE IC695CPE330 - Dual-Core Microprocessor Industrial Control Module
  • GE Fanuc - DS200LDCCH1A Advanced Mark V PLC for Industrial Control
  • GE IS200XDIAG1A-DD - Advanced Circuit Board PLC for Industrial Automation
  • GE IS200ACLAH1A - Advanced Control Assembly
  • GE Fanuc - IC697CPM790 PLC Control Module
  • GE UR6EH - I/O Module for Advanced Industrial Automation
  • GE Fanuc - IC693CPU374HW PAC Systems RX3i
  • GE Electric - IS220YDOAS1AK Analog I/O Pack Industrial Automation Solutions
  • GE FANUC - VMIPCI-5565-110000 Advanced Reflective Memory Node Card for Industrial Automation
  • GE Fanuc - HE693STP311 Indexer Stepper Motor High Performance for Industrial Control Systems
  • GE Fanuc - IS230SNAIH4A/IS200STAIH2ACB Precision Control for Industrial Automation
  • GE IC200MDL740J - Output Module Advanced Control Solutions for Industrial Automation
  • GE FANUC - 745-W2-P5-G5-HI-A-L | Advanced Transformer Protection System
  • GE Electric - DS200TCDAH1 Digital I/O Board Control Systems
  • GE FANUC - IC660BBR101 Relay Block High Performance Modular PLC Component
  • GE FANUC - DS200ADMAH1AAC Precision Digital-Analog Module for Industrial Control Systems
  • GE Fanuc - IC697VAL314 Programmable Automation Controller
  • GE HE693RTM705C - RTU Master Module
  • GE DS200FCSAG2ACB - Advanced Control System Module for Industrial Automation
  • GE Fanuc - IC200TBM002 | Versamax PLC Modular Control Heart
  • GE VMIPMC-5565 - Memory PMC Modules
  • GE IC687BEM744 - High-Performance Bus Controller
  • GE Electric - IS215ACLEH1AB
  • GE HE700GEN100 - Advanced VME Interface Module for Industrial Control Systems
  • GE IS200HFPAG2ADC - Precision Circuit Board for Industrial Control Systems
  • GE Electric - 0621L0431-G001 Armature Interface Card
  • GE FANUC - DS303A6A01KXA003XT Advanced Direct Current Contactor
  • GE Electric - IC641HBR302 Programmable Logic Controller Module
  • GE UR9WH - Multilin Ur Relay Module Advanced Control
  • GE IC200MDL240 - AC Input Module
  • GE Electric - IS420UCSCH2A-C-V0.1-A Unique Turbine Control System Module
  • GE IS200EXHSG3AEC - High-Speed Relay Driver for Turbine Control Systems
  • GE IC697ALG320 - Analog Output Module for Industrial Control Systems
  • GE IC200CHS002M - Industrial Control Module by GE-FANUC
  • GE IS200AEPCH1BAA - High-Performance Printed Circuit Board Module for Industrial Automation
  • GE IC693DSM302-RE - Digital Signal Processor Module
  • GE DS200SIOBH1ABA - High Performance Signal Input Module for Industrial Automation
  • GE Electric - IC660BBA026 Analog Input Module
  • GE Electric - DS200FCGDH1B DSP Drive Control Module
  • GE DS200TCEAG1BTF - Advanced Processor Card for Industrial Control Systems
  • GE FANUC - IC698CPE020-JU CPU MODULE Advanced Control
  • GE IC694MDL931 - RX3i AC/DC Voltage Output Module
  • GE IS420UCECH1B - Industrial Control System for Precision Applications
  • GE IC200ALG240 - Industrial Control Module
  • GE 8103AI-TX - Analog Input Module
  • GE FANUC - IC695PSD140 Power Supplies Industrial Control Solutions
  • GE DS200TCQCG1AFC - Relay Board for Industrial Control Systems
  • GE IS230SNAIH4A - & IS200STAIH2ACB Industrial PLC Circuit Board
  • GE FANUC - IC697VAL348 Digital to Analog Converter Board for Industrial Control
  • GE IS200WETCH1AAA - Precision Converter Power Module for Industrial Control Systems
  • GE IC695CPU320 - CF High Performance Modular Control CPU
  • GE FANUC - IC697MDL671 Interrupting Module Advanced Control
  • GE DS3800HSAA1T1M - Servo Amp