DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

Instrumentation Lessons: Selecting and Sizing Flowmeters

From:automation | Author:H | Time :2024-11-27 | 252 Browse: | Share:



A common problem occurs when a city or municipality uses two different types of flowmeters. Imagine one meter is a highly accurate magnetic flowmeter located in a meter vault to monitor the plant’s effluent flow, and the other is a doppler meter monitoring the influent flow. Doppler flowmeters tend to decline in accuracy as the flow rate drops. Even highly accurate magnetic flowmeters have both extremely high and low reading limits under which they will not operate accurately.

Case histories have shown that the plant appears to be generating wastewater, because the effluent is more than the influent, or something is evaporating the wastewater. We know in both cases that neither of these conditions really exists. What is happening is that the doppler meter is not matching the accuracy of the magnetic meter. The difference between 0.5 percent of 12 million gallons a day (Mgd) and 4.17 percent of 12 Mgd is substantial.

(.0417 – 0.005) × 12 Mgd = 0.44 Mgd, or 305 gal/min

Matters are made even worse if the doppler meter is used for pacing chemical feed into the wastewater with the same inaccuracies; the results are either overdosing or underdosing. Water treatment plants have low, average daily, and high peak demand flows, and further, low and average daily flows occur more frequently. This demonstrates the importance of being cautious in choosing meter types for those flow variables.

Many types of flowmeters suffer in performance as the flows decrease and approach the lower end of their viable flow range. Therefore, pacing during low flow periods may be highly suspect. Chemicals are becoming more costly, analytical instruments for measuring the effects of these chemicals are becoming costly, and corrosion due to underdosing or overdosing wastewater can also be costly to equipment. All of these may contribute to effluent that is a danger to wildlife and, in extended cases, can be harmful to the health of people living in the area.


Repeatability

In many ways, repeatability is even more important than accuracy. If an instrument is consistently wrong (inaccurate, but repeatable), the instrument can be adjusted to read correctly. However, if an instrument is inconsistent with how it reads, no amount of calibration work can fix the poor readings it provides.

Today, many field instruments work on force-balance techniques (where a process reading is converted to a force that then impacts a force-based sensor) such as piezoelectric crystals, capacitance, and strain gauges. These work on the principle that if you put a force on an instrument, there should be no motion even though an electric signal is generated on the output of that instrument. There are still flow, level, and chemical measuring devices that do not work on the force-balance principle, and for these types, looking at the repeatability of that piece of equipment is still important. A steady widening of the repeatability is an indication that something is going wrong with the instrument.

While the accuracy of an instrument can be improved with calibration, repeatability is often something that the design of the instrument defines.


Rangeability and uncertainty

As previously noted, the rangeability of an instrument must be taken into consideration during the sizing and selection part of a plant design. It is important that installed flowmeters can read the various intended flow ranges specific to where they are installed. At a minimum, they must meet the needed accuracy/repeatability for each flow rate for the application.

One of the most common problems with a piece of instrumentation equipment is the exaggeration of its range. How many times have you heard that a meter can read flow rates at velocities of 1 to 100 ft/s, giving the impression that you can read flows accurately through that total velocity range?

What often goes unmentioned is that the particular meter’s accuracy has a 10:1 turndown ratio. This means that a meter sized to measure a range of 0 to 30 Mgd has a true accuracy over the full range of 3 to 30 Mgd. Below 3 Mgd, the meter accuracy diminishes.

Additionally, different types of meters have different turndown ratios over their full range. It is common for a Venturi tube, for example, to have two transmitters measuring the flow. This is because a Venturi tube with one transmitter measures accurately with a 6:1 turndown ratio over the full range. So, if we look at a range of 0 to 30 Mgd, the meter’s accuracy diminishes below 5 Mgd.

The range over which the instrument meets the stated linearity of uncertainty requirements is its “rangeability.” “Uncertainty” is the range of values within which the true values lie with a specified probability. Uncertainty of ±1 percent at 95 percent confidence means the instrument will give the user a range of ±1 percent for 95 readings out of 100.

Another common error occurs during equipment sizing. In the municipal wastewater sector, it is a common practice to assume that solids in wastewater will settle out around a velocity of 2 ft/s. A magnetic flowmeter reads accurately if the minimum velocity is above 2 ft/s, but below this, settling is likely to occur—and then who can say what the accuracy really is?

  • DS200SI0CG1A6A Input/Output Module
  • DS200SHVMG1AFE SCR High Voltage Interface Board
  • DS200RT8AG3AHC Relay Output Terminal Board
  • DS200FSAAG1ABA PCB Field Supply Gate Amplifier Board
  • 531X307LTBAFG1 F31X307LTBA LAN I/O Terminal Board
  • ABB AFS670 19" Ruggedized Switch AFS670-EREEDDDSSEEEEEEEPZYX05.1.0
  • NI Controller for VXI VXIPC-871B
  • IS200EPMCH1GE Mark VIe Patch Cord Power Distribution Card
  • VMICPCI-7632-03310 IS215UCCAH3A 350-657362-003310J GE gas turbine system control processor board
  • WEA13-13 2508-21001 Control Module / I/O Board
  • WES5120 2340-21004 Controller Main Module
  • WES5120 2340-21006 Field Controller Master Unit Module
  • ​ WESDAC D20ME 18-MAR-13 Excitation Control Module
  • D20 EME 2400-21004 Ethernet communication and expansion module
  • GE DS3800XTFP1E1C Thyristor Fan Out Board Brand
  • GE SR745-W2-P1-G1-HI-A-L-R-E Feeder protection relay
  • GE IS230TNDSH2A Discrete Output Relay Module Brand
  • GE Fanuc IS200TDBSH2ACC Mark VI Terminal Board Brand
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE VMIVME-1150 Serial Communications Controller
  • GE VMIVME-5576 Fiber-Optic Reflective Memory with Interrupts
  • GE VMIC Isolated Digital Output VMIVME-2170A
  • GE MULTILIN 760 FEEDER MANAGEMENT RELAY 760-P5-G5-S5-HI-A20-R-E
  • GE IS200AEPAH1BKE IS215WEPAH2BB Printed circuit board
  • GE IS210BPPCH1A Mark VIe I/O Pack Processor Card
  • GE IS220PRTDH1A 336A4940CSP6 High-Performance RTD Input Module
  • GE IS220PDIAH1BE 336A5026ADP4 Discrete Input Module
  • GE IS420ESWBH3A IONET Switch Module
  • GE 516TX 336A4940DNP516TX 16-port Ethernet switch
  • GE EVMECNTM13 Embedded control module
  • GE EVPBDP0001 EVPBDP032 control module
  • GE Hydran M2-X Enhanced Monitoring with Extended Sensor Life
  • GE UR6CH Digital I/O Module
  • GE IC695CPU315-CD Central processing unit
  • GE 531X305NTBAMG1 DR Terminal Board
  • GE 531X305NTBALG1 NTB/3TB Terminal Board 531X Series
  • GE 531X305NTBAJG1 NTB/3TB Terminal Board.
  • GE 531X305NTBAHG1 NTB/3TB Terminal Board 531X
  • GE 531X305NTBAEG1 is a PCB that functions as a DR terminal board.
  • General Electric 531X305NTBACG1 NTB/3TB Terminal Board 531X
  • GE Digital Energy D20 Analog Input Module
  • GE 94-164136-001 main board Control board
  • GE 269 PLUS-D/O-100P-125V Digital motor relay
  • GALIL DMC-9940 High-performance motion controller
  • FUJI NP1BS-08 base plate
  • FUJI NP1Y32T09P1 Transistor drain type digital output module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1X3206-A High-speed digital input module
  • FUJI NP1AYH4I-MR current output module
  • FUJI NP1S-22 Power module redundancy
  • FUJI RPXD2150-1T servo drive module
  • FUJI FVR008E7S-2UX Ac frequency converter
  • FUJI Ac frequency converter FVR008E7S-2
  • FUJI FVR004G5B-2 Small general-purpose frequency converter
  • FUJI A50L-2001-0232 Industrial control module
  • FUJI A50L-001-0266#N High-performance servo amplifier
  • Honeywell FS7-2173-2RP Gas sensor
  • Honeywell 10106/2/1 Digital Input Module in Stock
  • FRCE SYS68K CPU-40 B/16 PLC core processor module
  • Foxboro FBM I/O cards PBCO-D8-009
  • Foxboro AD916AE Digital Control System (DCS) Module
  • GE SR750-P5-G5-S5-HI-A20-R-E Multilin Relay
  • FOXBORO H90 H90C9AA0117S Industrial Computer Workstation
  • FOXBORO RH928AW | I/A Series Relay Output Module
  • Foxboro N-2AX+DIO Multi-functional input/output module
  • Foxboro RH924WA FCP280 Fiber Optic Network Adapter
  • FOXBORO H92 Versatile Hardware Component In
  • Foxboro FBM218 P0922VW HART® Communication Redundant Output Interface Module
  • Foxboro E69F-TI2-J-R-S E69F Series Current-To-Pneumatic Signal Converter
  • Foxboro E69F-BI2-S Converter
  • Foxboro H92A049E0700 The host of the DCS control station
  • Foxboro H90C9AA0117S Industrial computer workstation
  • Foxboro RH101AA High-performance industrial control module
  • Foxboro P0922YU FPS400-24 I/A Series Power supply
  • FOXBORO P0973LN Chassis-based managed switch with independent power supply
  • FOXBORO P0926PA Input/output module
  • Fanuc A06B-6050-H402 3 AXIS ANALOG AC SERVO DRIVE
  • FOXBORO L0130AD L0130AE-0H Power module group
  • FOXBORO 0399085B 0303440C+0303458A Combination Control Module
  • FOXBORO SY-0399095E (SY-0303451D+SY-0303460E) Process control board
  • FOXBORO 0399071D 0303440C+0303443B Input/Output (I/O) Module
  • FOXBORO RH924UQ Redundant Controller module
  • FFOXBORO E69F-TI2-S current pneumatic converter
  • FOXBORO FBM219 RH916RH Discrete I/O Module
  • FOXBORO FBM227 P0927AC Module
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E I/O module
  • FOXBORO SY-60399001R SY-60301001RB Industrial Control Module
  • FOXBORO 0399143 SY-0301060R SY-1025115C SY-1025120E Combined control board
  • FOXBORO 873EC-JIPFGZ electrodeless conductivity analyzer
  • FOXBORO P0916PH (High-density HART I/O Module)
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitters
  • FOXBORO Compact FBM240. Redundant with Readback, Discrete
  • FOXBORO FBM208/b, Redundant with Readback, 0 to 20 mA I/O Module
  • FOXBORO FBM201e Analog Input (0 to 20 mA) Interface Modules
  • FOXBORO P0916WG Terminal cable
  • FOXBORO P0926MX 2-Port Splitter
  • FOXBORO AD908JQ High-Frequency Module
  • FOXBORO AD916CC Processor module
  • Foxboro DCS FBM206 Pulse Input Module
  • FOXBORO FBM216 HART® Communication Redundant Input Interface Module
  • Foxboro p0903nu 1×8 unit sub-component module
  • Foxboro P0911SM Industrial control module
  • Foxboro CM902WM I/O module
  • Foxboro CM902WL Power module
  • Foxboro P0972VA Industrial Control Module
  • Foxboro Z-Module Control Processor 270 (ZCP270)
  • Foxboro PO916JS 16-channel terminal block module
  • Foxboro PO911SM High-performance digital/analog input/output module
  • Foxboro P0972PP-NCNI Network Interface Module
  • FOXBORO P0971QZ controller module
  • FOXBORO P0971DP Thermal resistance input/output module
  • FOXBORO P0970VB Cable connector
  • FOXBORO P0970EJ-DNBX Dual-node bus expansion module
  • FOXBORO P0970BP Redundant power supply system
  • FOXBORO P0970BC-DNBI DeviceNet bus interface module
  • FOXBORO P0961FX-CP60S Main control CPU module
  • FOXBORO P0961EF-CP30B Network Interface Unit
  • FOXBORO P0961CA Optical fiber local area network module
  • FOXBORO P0961BD-GW30B gateway processor module
  • FOXBORO P0961BC-CP40B/I/A Series high-performance control processor module
  • FOXBORO P0960JA-CP40 High-performance control processor
  • FOXBORO P0926TM Control module
  • FOXBORO P0916BX Termination Assembly
  • FOXBORO P0916AE P0916AG P0916AW Thermal resistance input type DCS card module
  • FOXBORO P0916AC FOXBORO distributed control system (DCS) compression terminal assembly
  • FOXBORO P0912CB High-performance interface module
  • FOXBORO P0911VJ Thermal resistance input output module