DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

Proper Valve Stem Sealing Best Practices

From:automation | Author:H | Time :2024-11-27 | 146 Browse: | Share:



To achieve and maintain low emissions, packing must be “live loaded” to keep constant pressure on the sealing rings (Figure 2). This is usually accomplished using compressed Belleville-type springs. These springs maintain a constant force on the packing, ensuring it seals over time, even as the rings wear from stem movement. Unfortunately, the increased pressure tends to restrict valve movement, so the sealing materials and valve stem finish must be carefully chosen to minimize fugitive emissions, while allowing valve stem movement.

Figure 2: The picture on the left shows a typical rising stem control valve with standard packing. More modern packing designs, shown on the right, employ compressed Belleville-type or other special springs to maintain constant pressure on the packing rings. This ensures the fugitive emissions are limited to 100 ppm or less, even as the rings wear.


Sealing valve stems with bellows

An alternative to valve packing is a valve bellows seal. A bellows seal uses a welded or mechanically formed metal barrier around the valve stem that can compress and stretch like an accordion (Figure 3). Because the seal is made of metal with a very low rate of deformation in critical areas, bellows seals achieve virtually zero leakage.

Figure 3: Bellows seal designs usually employ a welded leaf design (detail left and middle) or a mechanically formed design (right). A formed design can withstand many more cycles than a welded leaf design, but it is usually about three times longer.
Welded leaf bellow seals (Figure 3) are manufactured by welding together a stack of washer-like plates of thin metal to make a flexible seal with many folds over a given length. A formed bellows (Figure 3) uses a flat sheet of metal formed and welded into a tube. The tube is then mechanically and hydraulically formed into a bellows. 

Both designs can stretch about the same distance per fold, but because the formed bellows has far fewer folds per inch, its overall length is usually three times longer (Figure 4). However, the reduced number of welds and corresponding mechanical stress allow formed bellows to last significantly longer in most applications.

Because bellow seals are constructed of relatively thin metal and subjected to mechanical stress and corrosion, they can crack and fail over time. For this reason, a bellows seal valve usually has a standard packing above it to contain the process should the bellows fail in operation.


Figure 4: This valve employs formed bellows to achieve zero valve stem leakage. As an added precaution, the valve also includes integral standard packing above the bellows.

Packing versus bellows

Each method of valve stem sealing has pros and cons, so the best choice depends on the application. Perhaps the biggest advantage of standard or environmental packing is its comparatively low cost, along with a wide variety of valve packing materials and designs to suit most applications. Valve packings can also be adjusted and replaced without disassembling the valve.

The biggest advantage of a bellows design is its ability to deliver zero leakage. Such a specification is critical for lethal service applications. The bellow materials can also be chosen to handle higher temperatures and corrosive applications. Because the operational life of a bellows seal is based on the number and length of strokes, the estimated time to failure can be predicted with some accuracy, so replacement can be planned.

Each design has disadvantages as well. The performance and lifetime of packing is based on many variables, which are not always easily predicted. Small leaks usually can be addressed by tightening the packing, but at some point, the packing must be replaced. Also, the surface finish of the valve stem can have a big impact on the life and performance of a packing design. Regardless, all valve packing will leak to some extent, and this may not be acceptable in certain applications.

As mentioned previously, bellows seals will fatigue and eventually fail. When that occurs, the valve must be fully disassembled to replace the bellows seal. For this reason, the total cost of ownership for a bellows seal is typically higher than that of packing.


Application examples

When properly selected and applied, both packing and bellows seals can handle challenging applications. In one liquified natural gas application in Australia, a 24-inch by 30-inch letdown valve used a specially designed environmental packing arrangement and had very low valve stem leakage, despite operating at cryogenic temperatures around –300°F (Figure 5). Any fugitive emission from this valve translated into lost product, lost energy, and environmental damage—so it was critical to minimize leaks.

Figure 5: This 24-inch by 30-inch letdown valve employs a specially designed large stem diameter environmental seal for extremely low leakage rates, as demonstrated here during a test at –56°F.

A Chinese chemical plant had a lethal service hydrogen cyanide application requiring virtually zero leakage while in operation, so a bellows seal design was selected. Upon commissioning, the plant reported zero measurable emissions, and after six years, still had no reported leakages. The valves went through 50,000 full cycles and more than 10,000 partial cycles annually.

  • ALSTOM COP232.2 VME A32/D32, 029.232 446 controller unit
  • GE 151X1235DB15SA01 Gas turbine controller
  • Abaco VP869 FPGA Card
  • Abaco VP868 FPGA Card
  • Abaco VP780 FPGA Card
  • Abaco VP680 FPGA Card
  • PC821 PCIe FPGA Card
  • Abaco PC820 FPGA Card
  • Abaco PC720 FPGA Card
  • Abaco FlexVPX Backplane
  • Abaco VP880 / VP881
  • Abaco VP889 FPGA Board
  • Abaco VP430 RFSoC Board
  • Abaco VP460 Direct RF Processing System
  • Abaco VP431 RFSoC Board
  • Abaco VP461 6U VPX Xilinx UltraScale
  • Abaco VP891 3U VPX FPGA Processing Card
  • Abaco TM-683 2 PMC rear panel I/O transition module for 6U CPCI
  • Abaco CPCI-100A-FP 2-slot IndustryPack carrier for 3U CPCI systems
  • Abaco BIO-4 Rear transition card for the CPCI-200A IP carrier
  • Abaco VME-4116 VME Analog I/O Output Boards
  • Abaco VME-4140 VME Analog I/O Output Boards
  • Abaco VME-3122B VME Analog I/O Input Boards
  • Abaco VME-3113B Scanning 12-bit Analog-to-Digital Converter with Built-in-Test
  • Abaco Vme-4132 VME Analog I/O Output board
  • N-Tron® NT24K-14FXE6-SC-80 Managed 14-Port Gigabit Industrial Ethernet Switch
  • N-Tron® 7012FXE2-SC-40 Managed 12-port Industrial Ethernet Switch
  • N-Tron® NT24K-11GX3-SC-PT Managed 11-Port Gigabit Industrial Ethernet Switch
  • N-Tron® NT24K-14FXE6-SC-15 Managed 14-Port Gigabit Industrial Ethernet Switch
  • N-Tron® 7018FXE2-SC-15 Managed 18-port Industrial Ethernet Switch
  • N-Tron® NT24k 24-Port Rackmount Gigabit Managed Industrial Ethernet Switch
  • N-Tron® NT24k 24-Port, Dual Redundant VDC Power Input, Rackmount Gigabit Managed Industrial Ethernet Switc
  • N-Tron® NT24K-10FX2-SC Managed 10-Port Industrial Ethernet
  • N-Tron® NT24K-12SFP-DM4 Managed 12-Port Gigabit Industrial Ethernet Switch
  • N-Tron® NT24k 16-Port, Single Redundant VDC Power Input
  • N-tron SLX-6ES-5SC Unmanaged 6-port industrial Ethernet switch
  • NT24k® 10FX2-POE Managed PoE+ Gigabit Ethernet Switch
  • N-Tron® 105FXE-SC-15-POE-MDR Unmanaged 5-port PoE Switch
  • Sixnet® SL-8ES-1 Unmanaged 8-port Industrial Ethernet Switch
  • N-Tron® 106FX2-SC-MDR Unmanaged 6-port Industrial Ethernet Switch
  • Sixnet® SLX-9ES-3SC Unmanaged 9-port Industrial Ethernet Switch
  • N -Tron® 710FXE2-ST-80 Managed 10-port Industrial Ethernet Switch
  • N -Tron® 712FXE4-SC-15-HV Managed 12-port Industrial Ethernet Switch
  • N -Tron® 712FXE4-ST-15-HV Managed 12-port Industrial Ethernet Switch
  • N -Tron® 709FXE-SC-40 Managed 9-port Industrial Ethernet Switch
  • ABB IEMMU21 Module Mounting Unit
  • ABB CMA120 3DDE300400 Basic Controller Panel Unit
  • Bently Nevada 2300/20-RU 2300/20-CN Monitoring controller
  • A-B 4100-234-R IMC™ S Class Compact Motion Controllers
  • B&R Power Panel 300/400
  • ADLINK cPCI-3840 Processor module
  • ACQUISITIONLOGICAL81G -2
  • HIMA K1412B PLC Module
  • IS200VTCCH1CBD GE Speedtronic Turbine Control PCB board
  • TRICONEX 4200 Digital Output Module
  • DEIF SCM-1 PCB CARD Module
  • HIMA F3DIO20802 controller plc F3DIO20802
  • HIMA B5233 PLC Module
  • HIMA B5322 PLC Module
  • HIMA F7105A PLC Module
  • HIMA F7150 PLC Module
  • HIMA Z7308 PLC Module
  • HIMA F60 PS01
  • TRICONEX 4409 PLC Module
  • F8651X HIMA Central module F8651X
  • HIMA-6E-B HIMA-6E-B Large System Controller
  • HIMA P8403 PLC Module
  • F8621A HIMA communication module
  • IS200VRTDH1D GE Mark VI Printed Circuit Board
  • ABB NIACO2 PLC Module
  • ABB NIAMO1 PLC Module
  • HIMA F8652 98465266 PLC Module
  • F8652X HIMA Central module
  • HIMA 62100
  • HIMA 99-7105233 B5233-1 NSMP
  • ABBSPAD 346 C3-AA
  • ABBREF543KM127BABB
  • ABB 0-63007 M003742626
  • Abb FET3251A0P1B3C0H2M
  • ABB 3HAB8800-1
  • ABB 3AUA266001B166
  • ABB3HNM07686-1
  • ABB PQF4-3 TAS
  • Honeywell 30735863-502 - SWITCH
  • Honeywell TK-CCR014 - REDUNDANT NET INTERFACE NEW ORIGINAL FREE EXPEDITED SHIPPING/
  • Honeywell 51403165-400 - new 51403165400/
  • Honeywell318-049-001 quot100 Batteries(Japan Liion2Ah14.8Wh)INTERMEC/ PR2,PR3 P/N
  • Honeywell FC-PSU-UNI2450U - Power Supply
  • Honeywell 965-0676-010 - WARNING COMPUTER SV
  • Honeywell 51403519-160 - Module
  • Honeywell 107843 - HOUSING CARBON FILE P/N NE COND # 11438 (4)
  • Honeywell VR434VA5009-1000 - Brand new in box Condensing boiler valve DHL fast shipping
  • Honeywell SPXCDALMFX - plc new FREE EXPEDITED SHIPPING/
  • Honeywell BCM-PWS - BCM-ETH BCM-MS/TP BCM-MS/TP Network controller setFedEx or DHL
  • Honeywell YSTR12D-22/C/-2J0DFA/BE/400/T/-CM.HO.TG.SB.SM,ZS,F1,LP,/FX/,1C-BT - UNMP
  • Honeywell IWS-1603-HW - 90-250VAC 1.0A UNMP
  • Honeywell 51304386-150 - MEASUREX Factory Packed
  • Honeywell CC-PFB401 - / CCPFB401 (NEW IN BOX)
  • Honeywell 50071726 - St 800 Series Pressure Transmitter Remote Diaphragm 11-42VDC
  • Honeywell 621-2150 - / 6212150 (NEW NO BOX)
  • Honeywell 80360206-001 - USED YAMATAKE CLI BOARD
  • Honeywell BMDX001A-001 - ACCURAY / BOARD BMDX001A001
  • Honeywell XCL8010A - New CPU Controller.
  • Honeywell PGM-7320 - 1PCS NEW Rae Systems MiniRAE 3000 Portable VOC Monitor#XR
  • Honeywell BK-G40 - U65 *FULL INSTALLATION* Gas Meter 3?± Inlet/Outlet Spool NEW UNUSED
  • Honeywell DM106-0-B-00-0-R-1-00000-000-E0 - DPR100 250V NSNP
  • Honeywell KFD840 - PRIMARY FLIGHT DISPLAY CORE PN: 066-01206-0104
  • Honeywell 51401914-100 - 51400996-100
  • Honeywell C7012A1145 - 1PC New UV Flame Detector Expedited Shipping
  • Honeywell OV210 - Baxter Bakery Oven Igition Control. For DRO. 00-616973 NEW
  • Honeywell 51304431-125 - 1PC New /51304431125 1 year warranty#XR
  • Honeywell QPP-0002 - Quad Processor Module / 5 Vdc / Massima 1.2A/24Vdc/max.25mA
  • Honeywell QPP-0002 - Quad Processor Module / 5Vdc / Max. 1.2A/24Vdc/max.25mA
  • Honeywell 8C-PCNT02 - 514543363-275 module
  • Honeywell DPCB21010002 - Tata Printed Circuit Board
  • Honeywell DPCB21010002 - Tata Printed Circuit Board Rev: 0
  • Honeywell 001649-M5T028 - Tata Printed Circuit Board Rev: 0
  • Honeywell YSTD924-(J2A)-00000-FF,W3,TP,TG,SS - NSFS
  • Honeywell XF523-A - / XF523A (NEW IN BOX)
  • Honeywell TK-PRS021 - NEW IN STOCK ship by UPS
  • Honeywell 2MLR-AC22 - " 2mlr-dbsf,2mlf-ad4s,2mlf-dc4s,2mlr-ac22 Rack"
  • Honeywell 9436610 - MEASUREX NSMP
  • Honeywell RT10A-L0N-18C12S0E - RT10A.WLAN.IN.6803.CAM.STD.GMS
  • Honeywell 51305896-200 - P:C1 Rev D Nim Modem - FAST SHIP BY Fedex
  • Honeywell TK-FTEB01 - PCL module Brand New Fast Shipping By DHL
  • Honeywell 8694500 - Measurex Control Processor Module
  • Honeywell DR4500 - Truline and DR4300 Circular Chart Recorder
  • Honeywell EC-7850-A-1122 - / EC7850A1122 (NEW IN BOX)