DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

Ask the Automation Pros: What Are Your Thoughts About the Need for and Use of Simulation in Process Control?

From:automation | Author:ABB | Time :2024-11-25 | 215 Browse: | Share:

Russ Rhinehart’s Questions: How important is simulating a new control approach prior to implementing it? How does one include realistic issues in a simulation (noise, disturbances, constraints, nonlinearity, range of dynamics, etc.)?


Bran Hrankowsky’s response

Not to derail, but I am curious: I find that when I have enough information to model the items in Russ’ question, I tend to have enough information to design the right strategy without simulating. In many cases the model is useful to convince others who don’t understand control theory very well that it works. I’ll have created some ad hoc excel calculations to help me crunch numbers at different operating points, but not usually much else. To frame this, my experience is with pharmaceutical manufacture and associated utility systems. What are examples of processes where running models is more necessary?


 
Don’t get me wrong–we do tons of simulation using tie backs and other low to medium fidelity techniques–it’d be nearly impossible to program and test sequencing and batch operations without it. But typically if I have enough engineering information to make a model, I can apply all the books you guys have written to design the right solution and just worry about tuning it in during startup.
 
Reiterating: my experience is not terribly varied for process types–so I am not willing to say it is not valuable for assessing different control strategies.


Hunter Vegas’s response

My experience mirrors Brian but likely even more so.  I very rarely have to model much of anything, however most of my work is specialty chemicals (continuous and batch) and the reactions are usually well understood.  There have certainly been occasions where some simulation was required–usually associated with particularly aggressive or exothermic reactions, but the other 99.9% of the time we just configure what makes sense and adjust in run.
 

Michel Ruel’s response

In my experience, the use of digital twin and simulations is indispensable for certain projects. For example, in an ore processing project in South America, the simulation revealed crucial insights regarding batch capacity and buffering. The minimal cost of simulation was pivotal in readjusting the design.
 
Furthermore, in another case, simulation was instrumental in validating the control strategy for optimizing capacity in filling 8 bins with 2 shuttle conveyors from different sources. The cost of the simulation was negligible compared to the overall investment.
 
In conclusion, in the integration of automation and process control, simulation is undeniably advantageous. I strongly recommend the use of simulation, especially in cases where the design deviates from traditional approaches. the control strategy to fill 8 bins with 2 shuttle conveyors from different sources maximizing capacity. Again, the cost of the simulation was a small fraction of investment.
 
My point of view is that when you mix automation and process control, simulation is advantageous. I suggest to not hesitate to simulate when design is especially creative or different from usual approaches.



 

Hector Torres' response

Dynamic process simulations play a crucial role in replicating real manufacturing unit operations. The fidelity of a simulation refers to its ability to accurately represent steady-state and dynamic conditions. Fidelity depends on its capability to respond to changes from the control system, limits, and internal disturbances. Simulations can generally be classified as low, medium, or high fidelity, depending on their level of accuracy.
 
The choice of simulation fidelity is determined by the intended purpose and cost considerations. Dynamic simulations serve various purposes, including control system checkout, operator training, and testing new control strategies.
 
Simulations consist of individual models, interconnected and working together to represent the operation of the real process or manufacturing unit.
 
Low fidelity simulations help to ensure control strategies respond in the intended direction to changes in valve positions.
 
A high-fidelity simulation involves strict material and energy balances, both in steady-state and in dynamic scenarios. It does not rely on empirical relationships. Due to the complexity and cost associated with high-fidelity simulations, they are not always be feasible.
 
In my experience, a medium-fidelity simulation is option to take. It can incorporate a mix of model fidelities. Its main objective is to verify process control sequences (debugging) and ensure that control strategies respond as intended. Helps reframing considerations for control sequences design. For operator training and testing of new control strategies, a medium fidelity simulation offers a good cost-effective solution as they exhibit a good balance between accuracy and practicality.
 
Medium-fidelity simulation models are extremely helpful to save in time and headaches when starting up a new unit or at cutover after a migration. It helps understanding all interactions–process and equipment wise–that take place. Helps understanding what the operator will be seeing and help improve situation awareness. The more the code is exercised using simulation, the more code bugs encountered and fixed, the better off the operators’ training goes and, the better off experience at start-up. It is an awful experience being at the control room, having people looking over your shoulder (and looking at their watch), while waiting for you to fix bugs at the start-up showtime.

  • GE SR745-W2-P1-G1-HI-A-L-R-E Feeder protection relay
  • GE IS230TNDSH2A Discrete Output Relay Module Brand
  • GE Fanuc IS200TDBSH2ACC Mark VI Terminal Board Brand
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE VMIVME-1150 Serial Communications Controller
  • GE VMIVME-5576 Fiber-Optic Reflective Memory with Interrupts
  • GE VMIC Isolated Digital Output VMIVME-2170A
  • GE MULTILIN 760 FEEDER MANAGEMENT RELAY 760-P5-G5-S5-HI-A20-R-E
  • GE IS200AEPAH1BKE IS215WEPAH2BB Printed circuit board
  • GE IS210BPPCH1A Mark VIe I/O Pack Processor Card
  • GE IS220PRTDH1A 336A4940CSP6 High-Performance RTD Input Module
  • GE IS220PDIAH1BE 336A5026ADP4 Discrete Input Module
  • GE IS420ESWBH3A IONET Switch Module
  • GE 516TX 336A4940DNP516TX 16-port Ethernet switch
  • GE EVMECNTM13 Embedded control module
  • GE EVPBDP0001 EVPBDP032 control module
  • GE Hydran M2-X Enhanced Monitoring with Extended Sensor Life
  • GE UR6CH Digital I/O Module
  • GE IC695CPU315-CD Central processing unit
  • GE 531X305NTBAMG1 DR Terminal Board
  • GE 531X305NTBALG1 NTB/3TB Terminal Board 531X Series
  • GE 531X305NTBAJG1 NTB/3TB Terminal Board.
  • GE 531X305NTBAHG1 NTB/3TB Terminal Board 531X
  • GE 531X305NTBAEG1 is a PCB that functions as a DR terminal board.
  • General Electric 531X305NTBACG1 NTB/3TB Terminal Board 531X
  • GE Digital Energy D20 Analog Input Module
  • GE 94-164136-001 main board Control board
  • GE 269 PLUS-D/O-100P-125V Digital motor relay
  • GALIL DMC-9940 High-performance motion controller
  • FUJI NP1BS-08 base plate
  • FUJI NP1Y32T09P1 Transistor drain type digital output module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1X3206-A High-speed digital input module
  • FUJI NP1AYH4I-MR current output module
  • FUJI NP1S-22 Power module redundancy
  • FUJI RPXD2150-1T servo drive module
  • FUJI FVR008E7S-2UX Ac frequency converter
  • FUJI Ac frequency converter FVR008E7S-2
  • FUJI FVR004G5B-2 Small general-purpose frequency converter
  • FUJI A50L-2001-0232 Industrial control module
  • FUJI A50L-001-0266#N High-performance servo amplifier
  • Honeywell FS7-2173-2RP Gas sensor
  • Honeywell 10106/2/1 Digital Input Module in Stock
  • FRCE SYS68K CPU-40 B/16 PLC core processor module
  • Foxboro FBM I/O cards PBCO-D8-009
  • Foxboro AD916AE Digital Control System (DCS) Module
  • GE SR750-P5-G5-S5-HI-A20-R-E Multilin Relay
  • FOXBORO H90 H90C9AA0117S Industrial Computer Workstation
  • FOXBORO RH928AW | I/A Series Relay Output Module
  • Foxboro N-2AX+DIO Multi-functional input/output module
  • Foxboro RH924WA FCP280 Fiber Optic Network Adapter
  • FOXBORO H92 Versatile Hardware Component In
  • Foxboro FBM218 P0922VW HART® Communication Redundant Output Interface Module
  • Foxboro E69F-TI2-J-R-S E69F Series Current-To-Pneumatic Signal Converter
  • Foxboro E69F-BI2-S Converter
  • Foxboro H92A049E0700 The host of the DCS control station
  • Foxboro H90C9AA0117S Industrial computer workstation
  • Foxboro RH101AA High-performance industrial control module
  • Foxboro P0922YU FPS400-24 I/A Series Power supply
  • FOXBORO P0973LN Chassis-based managed switch with independent power supply
  • FOXBORO P0926PA Input/output module
  • Fanuc A06B-6050-H402 3 AXIS ANALOG AC SERVO DRIVE
  • FOXBORO L0130AD L0130AE-0H Power module group
  • FOXBORO 0399085B 0303440C+0303458A Combination Control Module
  • FOXBORO SY-0399095E (SY-0303451D+SY-0303460E) Process control board
  • FOXBORO 0399071D 0303440C+0303443B Input/Output (I/O) Module
  • FOXBORO RH924UQ Redundant Controller module
  • FFOXBORO E69F-TI2-S current pneumatic converter
  • FOXBORO FBM219 RH916RH Discrete I/O Module
  • FOXBORO FBM227 P0927AC Module
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E I/O module
  • FOXBORO SY-60399001R SY-60301001RB Industrial Control Module
  • FOXBORO 0399143 SY-0301060R SY-1025115C SY-1025120E Combined control board
  • FOXBORO 873EC-JIPFGZ electrodeless conductivity analyzer
  • FOXBORO P0916PH (High-density HART I/O Module)
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitters
  • FOXBORO Compact FBM240. Redundant with Readback, Discrete
  • FOXBORO FBM208/b, Redundant with Readback, 0 to 20 mA I/O Module
  • FOXBORO FBM201e Analog Input (0 to 20 mA) Interface Modules
  • FOXBORO P0916WG Terminal cable
  • FOXBORO P0926MX 2-Port Splitter
  • FOXBORO AD908JQ High-Frequency Module
  • FOXBORO AD916CC Processor module
  • Foxboro DCS FBM206 Pulse Input Module
  • FOXBORO FBM216 HART® Communication Redundant Input Interface Module
  • Foxboro p0903nu 1×8 unit sub-component module
  • Foxboro P0911SM Industrial control module
  • Foxboro CM902WM I/O module
  • Foxboro CM902WL Power module
  • Foxboro P0972VA Industrial Control Module
  • Foxboro Z-Module Control Processor 270 (ZCP270)
  • Foxboro PO916JS 16-channel terminal block module
  • Foxboro PO911SM High-performance digital/analog input/output module
  • Foxboro P0972PP-NCNI Network Interface Module
  • FOXBORO P0971QZ controller module
  • FOXBORO P0971DP Thermal resistance input/output module
  • FOXBORO P0970VB Cable connector
  • FOXBORO P0970EJ-DNBX Dual-node bus expansion module
  • FOXBORO P0970BP Redundant power supply system
  • FOXBORO P0970BC-DNBI DeviceNet bus interface module
  • FOXBORO P0961FX-CP60S Main control CPU module
  • FOXBORO P0961EF-CP30B Network Interface Unit
  • FOXBORO P0961CA Optical fiber local area network module
  • FOXBORO P0961BD-GW30B gateway processor module
  • FOXBORO P0961BC-CP40B/I/A Series high-performance control processor module
  • FOXBORO P0960JA-CP40 High-performance control processor
  • FOXBORO P0926TM Control module
  • FOXBORO P0916BX Termination Assembly
  • FOXBORO P0916AE P0916AG P0916AW Thermal resistance input type DCS card module
  • FOXBORO P0916AC FOXBORO distributed control system (DCS) compression terminal assembly
  • FOXBORO P0912CB High-performance interface module
  • FOXBORO P0911VJ Thermal resistance input output module
  • FOXBORO P0911QH-A High-precision module
  • FOXBORO P0911QB-C P0911QC-C Thermal resistance input/output module
  • FOXBORO P0904BH P0904FH P0904HB Distributed Control system (DCS) module
  • FOXBORO P0903ZP P0903ZQ Embedded System Debugging Module
  • Foxboro P0903ZL P0903ZN Industrial power module
  • Foxboro P0903ZE I/A Series Fieldbus Isolator Module
  • FOXBORO P0903NW Industrial Control Module
  • FFOXBORO P0903NQ Industrial power module
  • FFOXBORO P0903AA Control Module
  • FOXBORO P0400DL Digital output module
  • FOXBORO P0400BJ Digital output module
  • FOXBORO GW30 industrial control module
  • FOXBORO FBM231 Communication Output Module
  • FOXBORO Fieldbus Communications Module, FCM10Ef
  • FOXBORO Fieldbus Communications Module, FCM10E