DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

Ask the Automation Pros: What Are Your Thoughts About the Need for and Use of Simulation in Process Control?

From:automation | Author:ABB | Time :2024-11-25 | 217 Browse: | Share:


 
I am pleased to learn that industry folks see the value of testing control structures before commissioning, also.  Although, when I was in industry (13 years starting in 1969), control system design was intuitive, and I still believe that folks who are experienced in both the process and in control can be effective in designing without simulating.  But when selling the cost/benefit of an advanced application to management or previewing/fine-tuning a holistic design prior to implementation, I did think that simulation would be important.
 
How is this simulation learned?  Short courses, vendor courses, informally?
 
The chemical engineering undergraduate curriculum uses steady state simulators in the process design course(s).  And students do intuitively optimize the design to maximize an economic profitability metric.  Students are shown how to develop steady state first-principles models of individual unit operations (heat exchangers, reactors, fluid flow systems, etc.) in their sophomore and junior level courses.  But rarely do they use dynamic models, and even less so perform a study of the impact of disturbances and noise on the process operation.  In the process control course, they might use a Laplace transform representation of a linear, constant-gain, 3rd order fictitious process unit to represent the process.  In just a few hours of instruction (about 32 per semester per course, with 50-minute courses and time-out for tests and organization requirements) teachers can only take complete novices so far!
 
I would think, for a relevant process control system design, simulation ability should include:

  • Dynamic simulation, including discrete events such as mode switching in units, piping diversions, valve by-passing for maintenance, and MAN/AUTO/REMOTE/FF in the controller.

  • Numerical methods: to solve ODEs, for root-finding, and for optimization.

  • Operating a simulation software environment, including customizing inputs and output data processing.

  • Calibrating model coefficient values to match the process (ambient losses, friction factor in complicated piping systems, reactivity, etc.).

  • Choosing fast sub-processes to be at pseudo steady state.

  • Including noise (on measurements), drifting influences (fuel BTU content, ambient temperature, rain, fouling, raw material composition. etc.) and calibration error (i/p, valve stem, sensor/measurement, drift, failure, etc.)

  • Using long simulation times with the stochastic influences to evaluate the probability and degree of specification and constraint violation.

  • Start-up and shut-down and operation throughout the entire production and product range.

  • Batch and Continuous.

  • Using transition time to move to a desired operating point and penalty for violations to evaluate process economics and using control system devices to evaluate the cost and maintenance expenses of design choices. 

  • Investigating controller action (too aggressive or too sluggish) over the entire operating range.

  • Understanding the economic assessment of the process in the business context, and desired results when throughput constrained and unconstrained.

Because including noise and continually changing disturbances has been important in my research on nonlinear controllers, I included methods in my new ISA book, “Nonlinear Model-Based Control Using First-Principles Models."
 
I think that such is far from being teachable in an undergraduate degree program. 
 
Again, how is it learned?  Does this indicate an opportunity for an ISA training course?


Bran Hrankowsky’s follow-up

So to be clear: I am NOT advocating anyone stop using simulation. If it adds value, do it! i.e. this is one time where I am not arguing with anyone.
 
All the uses folks have mentioned are all great uses. We use it for initial training and offline testing extensively. A key practice is to demo the batch processes to the process engineers, operations and manufacturing scientists before investing in our regulatory required testing efforts with the actual application and graphics. Our startups would be a miserable failure if didn’t show up with software that could a t least run offline with some basic tie back simulations. (nothing like finding competing interlocks in the field….).
 
Were you on the ISA panel discussion (2008?) where the topic was about what schools should teach. There were three university professors and three hiring managers discussing the two different views. I can’t remember if I said it out loud during the session or to one of the professors after that it would be nice if the education on each unit op included the considerations you mentioned below and the typical control strategies (see the process control and optimization handbook). Maybe the aspen models that are created for homework should include parts and pieces of sequencing and control strategy implementations?
 
I am finding that the variation in controls education has grown significantly since I graduated in 2001. Setting aside that my degree is in controls…We have some engineering graduates coming in WITH NO CONTROLS COURSE OR INSTRUCTION AT ALL and others who don’t have practical application under their belt but have a good understanding of topics like gain schedules, gain arrays, feedforward, etc. and every level in between.

  • WES5120 2340-21004 Controller Main Module
  • WES5120 2340-21006 Field Controller Master Unit Module
  • ​ WESDAC D20ME 18-MAR-13 Excitation Control Module
  • D20 EME 2400-21004 Ethernet communication and expansion module
  • GE DS3800XTFP1E1C Thyristor Fan Out Board Brand
  • GE SR745-W2-P1-G1-HI-A-L-R-E Feeder protection relay
  • GE IS230TNDSH2A Discrete Output Relay Module Brand
  • GE Fanuc IS200TDBSH2ACC Mark VI Terminal Board Brand
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE VMIVME-1150 Serial Communications Controller
  • GE VMIVME-5576 Fiber-Optic Reflective Memory with Interrupts
  • GE VMIC Isolated Digital Output VMIVME-2170A
  • GE MULTILIN 760 FEEDER MANAGEMENT RELAY 760-P5-G5-S5-HI-A20-R-E
  • GE IS200AEPAH1BKE IS215WEPAH2BB Printed circuit board
  • GE IS210BPPCH1A Mark VIe I/O Pack Processor Card
  • GE IS220PRTDH1A 336A4940CSP6 High-Performance RTD Input Module
  • GE IS220PDIAH1BE 336A5026ADP4 Discrete Input Module
  • GE IS420ESWBH3A IONET Switch Module
  • GE 516TX 336A4940DNP516TX 16-port Ethernet switch
  • GE EVMECNTM13 Embedded control module
  • GE EVPBDP0001 EVPBDP032 control module
  • GE Hydran M2-X Enhanced Monitoring with Extended Sensor Life
  • GE UR6CH Digital I/O Module
  • GE IC695CPU315-CD Central processing unit
  • GE 531X305NTBAMG1 DR Terminal Board
  • GE 531X305NTBALG1 NTB/3TB Terminal Board 531X Series
  • GE 531X305NTBAJG1 NTB/3TB Terminal Board.
  • GE 531X305NTBAHG1 NTB/3TB Terminal Board 531X
  • GE 531X305NTBAEG1 is a PCB that functions as a DR terminal board.
  • General Electric 531X305NTBACG1 NTB/3TB Terminal Board 531X
  • GE Digital Energy D20 Analog Input Module
  • GE 94-164136-001 main board Control board
  • GE 269 PLUS-D/O-100P-125V Digital motor relay
  • GALIL DMC-9940 High-performance motion controller
  • FUJI NP1BS-08 base plate
  • FUJI NP1Y32T09P1 Transistor drain type digital output module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1X3206-A High-speed digital input module
  • FUJI NP1AYH4I-MR current output module
  • FUJI NP1S-22 Power module redundancy
  • FUJI RPXD2150-1T servo drive module
  • FUJI FVR008E7S-2UX Ac frequency converter
  • FUJI Ac frequency converter FVR008E7S-2
  • FUJI FVR004G5B-2 Small general-purpose frequency converter
  • FUJI A50L-2001-0232 Industrial control module
  • FUJI A50L-001-0266#N High-performance servo amplifier
  • Honeywell FS7-2173-2RP Gas sensor
  • Honeywell 10106/2/1 Digital Input Module in Stock
  • FRCE SYS68K CPU-40 B/16 PLC core processor module
  • Foxboro FBM I/O cards PBCO-D8-009
  • Foxboro AD916AE Digital Control System (DCS) Module
  • GE SR750-P5-G5-S5-HI-A20-R-E Multilin Relay
  • FOXBORO H90 H90C9AA0117S Industrial Computer Workstation
  • FOXBORO RH928AW | I/A Series Relay Output Module
  • Foxboro N-2AX+DIO Multi-functional input/output module
  • Foxboro RH924WA FCP280 Fiber Optic Network Adapter
  • FOXBORO H92 Versatile Hardware Component In
  • Foxboro FBM218 P0922VW HART® Communication Redundant Output Interface Module
  • Foxboro E69F-TI2-J-R-S E69F Series Current-To-Pneumatic Signal Converter
  • Foxboro E69F-BI2-S Converter
  • Foxboro H92A049E0700 The host of the DCS control station
  • Foxboro H90C9AA0117S Industrial computer workstation
  • Foxboro RH101AA High-performance industrial control module
  • Foxboro P0922YU FPS400-24 I/A Series Power supply
  • FOXBORO P0973LN Chassis-based managed switch with independent power supply
  • FOXBORO P0926PA Input/output module
  • Fanuc A06B-6050-H402 3 AXIS ANALOG AC SERVO DRIVE
  • FOXBORO L0130AD L0130AE-0H Power module group
  • FOXBORO 0399085B 0303440C+0303458A Combination Control Module
  • FOXBORO SY-0399095E (SY-0303451D+SY-0303460E) Process control board
  • FOXBORO 0399071D 0303440C+0303443B Input/Output (I/O) Module
  • FOXBORO RH924UQ Redundant Controller module
  • FFOXBORO E69F-TI2-S current pneumatic converter
  • FOXBORO FBM219 RH916RH Discrete I/O Module
  • FOXBORO FBM227 P0927AC Module
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E I/O module
  • FOXBORO SY-60399001R SY-60301001RB Industrial Control Module
  • FOXBORO 0399143 SY-0301060R SY-1025115C SY-1025120E Combined control board
  • FOXBORO 873EC-JIPFGZ electrodeless conductivity analyzer
  • FOXBORO P0916PH (High-density HART I/O Module)
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitters
  • FOXBORO Compact FBM240. Redundant with Readback, Discrete
  • FOXBORO FBM208/b, Redundant with Readback, 0 to 20 mA I/O Module
  • FOXBORO FBM201e Analog Input (0 to 20 mA) Interface Modules
  • FOXBORO P0916WG Terminal cable
  • FOXBORO P0926MX 2-Port Splitter
  • FOXBORO AD908JQ High-Frequency Module
  • FOXBORO AD916CC Processor module
  • Foxboro DCS FBM206 Pulse Input Module
  • FOXBORO FBM216 HART® Communication Redundant Input Interface Module
  • Foxboro p0903nu 1×8 unit sub-component module
  • Foxboro P0911SM Industrial control module
  • Foxboro CM902WM I/O module
  • Foxboro CM902WL Power module
  • Foxboro P0972VA Industrial Control Module
  • Foxboro Z-Module Control Processor 270 (ZCP270)
  • Foxboro PO916JS 16-channel terminal block module
  • Foxboro PO911SM High-performance digital/analog input/output module
  • Foxboro P0972PP-NCNI Network Interface Module
  • FOXBORO P0971QZ controller module
  • FOXBORO P0971DP Thermal resistance input/output module
  • FOXBORO P0970VB Cable connector
  • FOXBORO P0970EJ-DNBX Dual-node bus expansion module
  • FOXBORO P0970BP Redundant power supply system
  • FOXBORO P0970BC-DNBI DeviceNet bus interface module
  • FOXBORO P0961FX-CP60S Main control CPU module
  • FOXBORO P0961EF-CP30B Network Interface Unit
  • FOXBORO P0961CA Optical fiber local area network module
  • FOXBORO P0961BD-GW30B gateway processor module
  • FOXBORO P0961BC-CP40B/I/A Series high-performance control processor module
  • FOXBORO P0960JA-CP40 High-performance control processor
  • FOXBORO P0926TM Control module
  • FOXBORO P0916BX Termination Assembly
  • FOXBORO P0916AE P0916AG P0916AW Thermal resistance input type DCS card module
  • FOXBORO P0916AC FOXBORO distributed control system (DCS) compression terminal assembly
  • FOXBORO P0912CB High-performance interface module
  • FOXBORO P0911VJ Thermal resistance input output module
  • FOXBORO P0911QH-A High-precision module
  • FOXBORO P0911QB-C P0911QC-C Thermal resistance input/output module
  • FOXBORO P0904BH P0904FH P0904HB Distributed Control system (DCS) module
  • FOXBORO P0903ZP P0903ZQ Embedded System Debugging Module
  • Foxboro P0903ZL P0903ZN Industrial power module
  • Foxboro P0903ZE I/A Series Fieldbus Isolator Module
  • FOXBORO P0903NW Industrial Control Module
  • FFOXBORO P0903NQ Industrial power module
  • FFOXBORO P0903AA Control Module
  • FOXBORO P0400DL Digital output module