DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

Using Control Valve Installed Gain Calculations

From:automation | Author:H | Time :2024-11-27 | 98 Browse: | Share:


Figure 3: Installed characteristics of the valve proposed in Figure 2.


Reference 4 does not include the ability to graph what is happening to P1 and P2, and thus the pressure differential available to the valve. However, the reference 4 worksheet has a tabulation of P1 and P2, so constructing a graph of P1 and P2 versus relative valve travel was simple. In the installed pressure level graph, as valve relative travel approaches 0.8 (80% valve travel), the pressure drop available to the valve decreases rapidly.
 

Different pump, different valves

The user found a pump with a slightly higher and flatter head curve. A new analysis of the upstream system gave the revised values of P1 and DELTA P shown in red in Figure 4. Putting these new values of P1 and DELTA P into the user’s valve-sizing program and into the reference 4 worksheet gives the graphs of Figure 4. The valve is now operating between 25% and 75% travel. The maximum design flow is now at slightly less than 80% of the fully open flow, giving ample safety factor at the high end of the range. The installed gain graph is much flatter and well within the suggested limits.


Figure 4: Installed characteristics of the valve with the revised figure 2 pump pressures shown in red.


Figure 5 is based on an application where the system designer recommended a 10-inch segment ball valve after examining the installed flow and gain graphs and determining the segment valve was a good choice. The purchasing agent commented that a 10-inch high-performance butterfly valve would cost approximately one-third less than the segment ball valve. The system designer agreed to investigate the applicability of a high-performance butterfly valve, knowing the two valve styles have quite different inherent flow characteristics. Segment ball valves tend to have a nearly perfect equal percentage characteristic. High-performance butterfly valves tend to have an inherent flow characteristic between linear and equal percentage.


Figure 5: Comparison of a segment ball valve and a high-performance butterfly valve in the same system. The installed gain of both valves is plotted on a single graph.

The upper right graph in Figure 5 compares the inherent flow characteristics of the two valves being considered. The installed characteristics are linear between the design minimum and maximum flows. The installed gain of each valve meets the suggested gain limits between the minimum and maximum design flows. The gain of the segment valve is slightly closer to 1.0. The maximum gain change of the butterfly valve is 1.4:1, where the maximum gain change of the segment valve is 1.6:1. In this system, either valve would likely control satisfactorily. In a system with different valve pressure drop versus flow characteristics, this might not be the case.



Which pressure drop?

A question arose regarding the pressure drop to use when sizing a control valve. Assuming a system that has already been designed, the sizing pressure cannot be arbitrarily assigned, but the values of P1 and P2 need to be obtained by an analysis of the frictional pressure losses and static pressure changes in the system both upstream and downstream of the control valve. The ideal situation is where the person selecting the control valve has a say in determining what the control valve pressure drop will be, most often by specifying the pump that will be used. Using an installed gain analysis of various pumps that might be suitable can be helpful.

To demonstrate how this can be done, three possible pumps for the system shown in Figure 6 will be considered, and the one that allows satisfactory controllability while minimizing energy consumption will be selected. Curves of P1, the pressure just upstream of the valve, are shown for each of the three pumps, along with the power required by each at a normal flow rate of 400 gpm. These curves slope downward in proportion to the flow squared from the 100 gpm pump head (45, 60, and 75 psig, respectively, for pumps A, B, and C) to a pressure 10 psi lower due to the combined effect of the 5 psi pressure loss in the upstream piping and the 5 psi decrease in pump head from 100 gpm to 600 gpm stated in the figure. The curve for P2, the pressure at the control valve outlet, starts with the 10 psig static head of the tank at very low flows and increases in proportion to the flow squared to 30 psig as the downstream piping and heat exchanger pressure losses increase to their 600 gpm values.

Figure 6: Control valve installed gain analysis helps balance pumping energy and process controllability. Segment valve graphic courtesy of Neles


The control valve pressure drops (the difference between P1 and P2) are indicated in the figure by the arrows at the left side of the figure for 100 gpm and at the right side of the figure for 600 gpm. The analysis is performed based on using a segment ball valve. The graph in the lower left of Figure 6 shows the calculated installed flow characteristics. Keep in mind the installed flow graphs generated by the worksheet of the reference 4 graph is relative flow, so 1.0 is 100% of the fully open flow, which is different for each of the three cases. What is interesting is the installed gain graphs.

  • Bently Nevada 2300/20-RU 2300/20-CN Monitoring controller
  • A-B 4100-234-R IMC™ S Class Compact Motion Controllers
  • B&R Power Panel 300/400
  • ADLINK cPCI-3840 Processor module
  • ACQUISITIONLOGICAL81G -2
  • HIMA K1412B PLC Module
  • HIMA K9202B PLC Module
  • IS200VTCCH1CBD GE Speedtronic Turbine Control PCB board
  • TRICONEX 4200 Digital Output Module
  • DEIF SCM-1 PCB CARD Module
  • HIMA F3DIO20802 controller plc F3DIO20802
  • HIMA B5233 PLC Module
  • HIMA B5322 PLC Module
  • HIMA F7105A PLC Module
  • HIMA F7150 PLC Module
  • HIMA Z7308 PLC Module
  • HIMA F60 PS01
  • TRICONEX 4409 PLC Module
  • F8651X HIMA Central module F8651X
  • F3236 DIGITAL INPUT MODULE
  • HIMA-6E-B HIMA-6E-B Large System Controller
  • F8627X HIMA communication module F8627X
  • HIMA P8403 PLC Module
  • F8628X HIMA F8628X communication module
  • F8621A HIMA communication module
  • IS200VRTDH1D GE Mark VI Printed Circuit Board
  • ABB NIACO2 PLC Module
  • ABB NIAMO1 PLC Module
  • HIMAcard F8650X
  • HIMA F8652 98465266 PLC Module
  • F8652X HIMA Central module
  • HIMA 62100
  • HIMA 99-7105233 B5233-1 NSMP
  • ABBSPAD 346 C3-AA
  • ABBREF543KM127BABB
  • ABB 0-63007 M003742626
  • Abb FET3251A0P1B3C0H2M
  • ABB 3HAB8800-1
  • ABB 3AUA266001B166
  • ABB3HNM07686-1
  • ABB PQF4-3 TAS
  • ABBAC500 DI581-SB1
  • Honeywell 30735863-502 - SWITCH
  • Honeywell TK-CCR014 - REDUNDANT NET INTERFACE NEW ORIGINAL FREE EXPEDITED SHIPPING/
  • Honeywell 51403165-400 - new 51403165400/
  • Honeywell318-049-001 quot100 Batteries(Japan Liion2Ah14.8Wh)INTERMEC/ PR2,PR3 P/N
  • Honeywell FC-PSU-UNI2450U - Power Supply
  • Honeywell 965-0676-010 - WARNING COMPUTER SV
  • Honeywell 51403519-160 - Module
  • Honeywell 107843 - HOUSING CARBON FILE P/N NE COND # 11438 (4)
  • Honeywell VR434VA5009-1000 - Brand new in box Condensing boiler valve DHL fast shipping
  • Honeywell SPXCDALMFX - plc new FREE EXPEDITED SHIPPING/
  • Honeywell BCM-PWS - BCM-ETH BCM-MS/TP BCM-MS/TP Network controller setFedEx or DHL
  • Honeywell YSTR12D-22/C/-2J0DFA/BE/400/T/-CM.HO.TG.SB.SM,ZS,F1,LP,/FX/,1C-BT - UNMP
  • Honeywell IWS-1603-HW - 90-250VAC 1.0A UNMP
  • Honeywell 51304386-150 - MEASUREX Factory Packed
  • Honeywell CC-IP0101 - Profibus Gateway Module
  • Honeywell CC-PFB401 - / CCPFB401 (NEW IN BOX)
  • Honeywell 50071726 - St 800 Series Pressure Transmitter Remote Diaphragm 11-42VDC
  • Honeywell 621-2150 - / 6212150 (NEW NO BOX)
  • Honeywell 80360206-001 - USED YAMATAKE CLI BOARD
  • Honeywell BMDX001A-001 - ACCURAY / BOARD BMDX001A001
  • Honeywell XCL8010A - New CPU Controller.
  • Honeywell PGM-7320 - 1PCS NEW Rae Systems MiniRAE 3000 Portable VOC Monitor#XR
  • Honeywell BK-G40 - U65 *FULL INSTALLATION* Gas Meter 3?± Inlet/Outlet Spool NEW UNUSED
  • Honeywell DM106-0-B-00-0-R-1-00000-000-E0 - DPR100 250V NSNP
  • Honeywell KFD840 - PRIMARY FLIGHT DISPLAY CORE PN: 066-01206-0104
  • Honeywell 51401914-100 - 51400996-100
  • Honeywell TK-PRS021 - Module Via FEDEX/DHL
  • Honeywell C7012A1145 - 1PC New UV Flame Detector Expedited Shipping
  • Honeywell OV210 - Baxter Bakery Oven Igition Control. For DRO. 00-616973 NEW
  • Honeywell 51304431-125 - 1PC New /51304431125 1 year warranty#XR
  • Honeywell QPP-0002 - Quad Processor Module / 5 Vdc / Massima 1.2A/24Vdc/max.25mA
  • Honeywell QPP-0002 - Quad Processor Module / 5Vdc / Max. 1.2A/24Vdc/max.25mA
  • Honeywell 8C-PCNT02 - 514543363-275 module
  • Honeywell DPCB21010002 - Tata Printed Circuit Board
  • Honeywell DPCB21010002 - Tata Printed Circuit Board Rev: 0
  • Honeywell 001649-M5T028 - Tata Printed Circuit Board Rev: 0
  • Honeywell YSTD924-(J2A)-00000-FF,W3,TP,TG,SS - NSFS
  • Honeywell XF523-A - / XF523A (NEW IN BOX)
  • Honeywell TK-PRS021 - NEW IN STOCK ship by UPS
  • Honeywell 2MLR-AC22 - " 2mlr-dbsf,2mlf-ad4s,2mlf-dc4s,2mlr-ac22 Rack"
  • Honeywell 9436610 - MEASUREX NSMP
  • Honeywell RT10A-L0N-18C12S0E - RT10A.WLAN.IN.6803.CAM.STD.GMS
  • Honeywell 51305896-200 - P:C1 Rev D Nim Modem - FAST SHIP BY Fedex
  • Honeywell TK-FTEB01 - PCL module Brand New Fast Shipping By DHL
  • Honeywell 8694500 - Measurex Control Processor Module
  • Honeywell DR4500 - Truline and DR4300 Circular Chart Recorder
  • Honeywell EC-7850-A-1122 - / EC7850A1122 (NEW IN BOX)
  • Honeywell XNX-UTAI-RNNNN - NEW Universal transmitter DHL Fast delivery
  • Honeywell SPXCDALMFX - plc new One Year Warranty #
  • Honeywell TC-RPFM01 - C200 system card brand new Fast Shipping
  • Honeywell 51196655-100 - NSMP
  • Honeywell XCL8010A - / XCL8010A (USED TESTED CLEANED)
  • Honeywell 51198801-100 - NEW CPU INTERFACE BOARD UPGRADE KIT UPIU 51306154-100
  • Honeywell 84795 - Sputtering Target 5N Al5Cu 7830x11640x13050
  • Honeywell W7704A-1004 - / W7704A1004 (USED TESTED CLEANED)
  • Honeywell RA890G1229 - FOR FSG UV Protectorelay /PL3
  • Honeywell KFS-599B - 071-01576-0101 UHF Communication Control with Mods (28V)
  • Honeywell WPC2000 - WINTRISS 9683001 WINTRISS CLUTCH/BRAKE CONTROL *NO KEYS*
  • Honeywell C7012E1112 - 1PC C7012E 1112 Burner Detector New In Box Expedited Ship #
  • Honeywell 8C-TCNTA1 - C300 system card brand new Fast Shipping
  • Honeywell ANT67A - TCAS Antenna 071-01548-0100 w/ October 2023 Repaired 8130
  • Honeywell CC-PDIS01 - PLC Module Brand New Fast Shipping FedEx or DHL
  • Honeywell R7247C1001 - 2-4SECS NSMP
  • Honeywell ALI-80A - Collins Encoding Altimeter - P/N 622-3975-011 - Tested 8130 -Serviceable
  • Honeywell 001650-M5T028 - Tata Relay Circuit Board
  • Honeywell 51196886-100 - PC BOARDS (126201 - NEW)
  • Honeywell J-HAM10 - NSNP
  • Honeywell TC-IXL062 - 1PCS module New fedex or DHL
  • Honeywell 114M4910-6 - PISTON ASSY PN NS COND 12037
  • Honeywell C7076 - 191002B Sensor Amplifier 220/240v
  • Honeywell 510STR12D21A-B77P - NSNP
  • Honeywell 51304511-200 - Module Nim Modem Via FEDEX/DHL
  • Honeywell IC-600 - Integrated Communication Unit RCZ851E 7510700-806 Removed Working
  • Honeywell TC-IAH161 - 1PC NEW REDUNDANT NET INTERFACE one year warranty#XR
  • Honeywell 2001-100-150-126-280-20-100000 - REMAN
  • Honeywell QPP-0001 - FSC QUAD PROCESSOR PACK QPP MODULE CC V1.4
  • Honeywell 30734558-001 - / 30734558001 (USED TESTED CLEANED)
  • Honeywell STD830-E1HS4AS-1-A-ADB-11C-B-21A0-00-0000 - 4500PSI NSNP
  • Honeywell 900C75-0560 - NEW HC900 Controller module FedEx DHL Fast delivery
  • Honeywell BL870 - Bezel 7014331-921 w/ October 2018 Repaired 8130
  • Honeywell STG77L-E1G000-1-A-CDC-11S-A-20A0-00-0000 - NSMP
  • Honeywell FF-SB14E12K-S2 - / FFSB14E12KS2 (USED TESTED CLEANED)
  • Honeywell 51198685-100 - "Rev. A, 140519-2-LF Power Supply Module 10A 100-240 VAC"
  • Honeywell 942-M96-M - plc new FREE EXPEDITED SHIPPING
  • Honeywell TK-IAH161 - 1PC New ANALOG INPUT TKIAH161 Expedited Shipping
  • Honeywell C7061F2001 - 1PC UV Flame Detector New In Box #