DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

ABBAO2000-LS25 Laser analyzers

From:ABB | Author:LIAO | Time :2025-08-09 | 249 Browse: | Share:

1.5 Laser classification and warnings The diode lasers used in the analyzer operate in the near infrared (NIR) range between 700 and 2400 nm depending on the gas to be measured. Laser Class 1M for sample component O2 Laser Class 1 for all other sample components according to IEC 60825-1. NOTE: The lasers emit invisible light! WARNING: Class 1M Laser Product – Do not open when energized! Do not view directly with optical instruments! WARNING: Class 1 Laser Product – Do not open when energized!


2.1 Tools and other equipment The following equipment is necessary to install and calibrate the equipment: 

 2 pcs open-end spanners for M16 bolts 

 1 pcs Allen key 5 mm for the locking screws on flanges 

 1 pcs PC (386 or higher). Used during installation and calibration 

 1 pcs flat screwdriver 2.5 mm for electrical connections

Flow conditions at measuring point When deciding the placement of the analyzer in the process, we recommend a minimum of 5 stack diameters of straight duct before and 2 stack diameters of straight duct after the point of measure.

Monitor placement Both the transmitter and receiver units should be easily accessible. A person should be able to stand in front of either the transmitter unit or the receiver unit and adjust the M16 fixing bolts using two standard spanners. For the receiver unit there should be at least 1 m free space measured from the flange fixed to the stack and outwards as shown in Figure 2-1.

power is disconnected or switched off before connecting any cable. Please note that the power plug is the disconnecting device (no separate mains switch on instrument) and should be placed easily accessible for the operator. To install the instrument on the process follow the steps below. 

  1. Install transmitter alignment and purging unit (5) onto the stack flange with 4 pcs. M16x60 bolts (ref. Figure 3-4). All 4 bolts on either side must be tightened firmly to compress the large O-ring. Adjust the 4 locking screws prior to mounting the unit, to assure good alignment of the unit and a uniform compression of the O-ring. 2. Install pressurized instrument purging as described in Section

  2. 1.2. 3. Open the purging. Refer to Section 3.1.2 for details. 4

  3. . Put the window adapter ring (4) on the alignment unit. Make sure that the O-ring on the alignment unit is tight and greased. The guiding pin on the alignment unit must fit the hole in the adapter ring.

  4. . Affix an O-ring (not greased) to the adapter ring and connect the transmitter unit to the alignment unit. The guiding pin on the adapter ring must fit the hole in the transmitter window. Tighten the transmitter-mounting nut.

  5. . Repeat steps 1-5 for the receiver unit.

  6. . Connect the transmitter and receiver units with the corresponding cable (refer to Figure 6-1 for location of receiver connection on transmitter unit). All connectors are coded with small red pins on the inside.

  7. . Connect external 4–20 mA temperature and pressure probes (ref. Section 6.3 and 6.5). This is optional as some instruments operate without probes. Input signals are connected to the terminals in the power supply unit or directly to the terminals in the main power connector at the transmitter unit. If connected to the power connector the factory-mounted wires should be removed from the terminals in question.

  8. . Connect the transmitter and power supply units with the corresponding cable. The analyzer can now be switched on. This procedure is described in Section 3.2.



Air purging of flanges The instrument windows are kept clean by setting up a positive flow of air through the flanges and into the stack. This purging will prevent particles from settling on the optical windows and contaminating them. The purge gas must be dried and cleaned. We recommend using instrument air for purging. If instrument air is not available a separate blower is needed. A purge flow of approximately 20–50 l/min (process dependent) is sufficient for most installations. Alternatively, the initial velocity of the purge flow in the flanges is set to 1/10 of the gas velocity in the duct. After completion of the installation the purge flow is optimized as described in Section 5.3. The air quality should conform to standard set by ISO 8573.1, Class 2-3. This means particles down to 1 micron should be removed, including coalesced liquid water and oil, and a maximum allowed remaining oil aerosol content of 0.5 mg/m3 at 21C (instrument air). Note that some instruments require nitrogen purging, e.g. O2 instruments for high temperature or pressure applications, some H2O instruments etc.

Purging of transmitter and receiver units For applications where purging of transmitter and receiver units is required the direction of flow is illustrated in Figure 3-3. Since there are optical surfaces inside these units, the cleanness of the gas should be ensured and additional filtering may be necessary. Note that so called “instrument air” may contain some oil and water. If receiver and transmitter are purged with such air they can be permanently damaged after a short time. It is highly recommended to use nitrogen as a purge gas. The purge flow must not be high to avoid pressure build-up inside the units. We recommend reducing the flow to less than 0.5 l/min. If the flow is blocked the units can hold the gas to better than 99.5% during one hour

  • ENTERASYS A4H254-8F8T Ethernet switch
  • ENTERASYS C2RPS-CHAS2 SecureStack c2 Redundant power supply chassis
  • ENTERASYS A2H124-24 Ethernet edge switch
  • EMG LID43.03 Reference voltage source
  • EMERSON PR6426010-110+C0N021916-240 32mm Eddy Current Sensor
  • EMERSON PR6423/011-110+C0N021 Eddy Current Signal Converter
  • EMERSON VE4003S2B1 DeltaV™ M-series Traditional I/O
  • EMERSON 2500M/AI4UNIV analog input module
  • EMERSON PMCspan PMC Expansion Mezzanine
  • EMERSON PR6424/011-140 16mm Eddy Current Sensor
  • EMERSON KJ3242X1-BK1 12P4711X042 S-Series H1 Card
  • EMERSON 960132-01 FX-316 Positioning Servo Drive 230 VAC
  • EMERSON KJ4006X1-BD1 Interface Terminal Block
  • EMERSON 1C31181G01 module
  • EMERSON CE4003S2B6 I/O Termination Block
  • EMERSON KJ4001X1-CK1 40-Pin Mass Termination Block
  • EMERSON VE4012S2B1 Module
  • EMERSON KL4103X1-BA1 CHARMs Smart Logic Solver Carrier
  • EMERSON A6370D/DP Overspeed Protection Monitor
  • EMERSON P188.R2 Industrial interface module
  • EMERSON VE3008 CE3008 KJ2005X1-MQ1 12P6381X042 MQ Controller
  • EMERSON TPMC917 4MB SRAM with Battery Backup and 4 Channel RS232
  • EMERSON P152.R4 Multifunctional module
  • EMERSON DA7281520 P152 Processor board
  • EMERSON PR6423/008-110 8mm Eddy Current Sensor
  • EMERSON PR6423/000-131 8mm Eddy Current Sensor
  • EMERSON MVME61006E-0163R VMEbus Single-Board Computer
  • EMERSON Ovation 5X00453G01 Remote I/O Node Controller Module
  • EMERSON 5X00070G04 Analog input
  • EMERSON Ovation 5X00070G01 Analog Input Module
  • EMERSON Ovation 5X00790G01 Compact Controller Module
  • EMERSON 5X00846G01 HART analog output module
  • EMERSON 1C31113G01 Digital output module (5-60VDC)
  • EMERSON KJ4110X1-BA1 I/O terminal module
  • EMERSON CSI3125 A3125/022-020 Shaft-Vibration Monitor
  • EMERSON 5X00273G01 Digital output module
  • EMERSON KJ4001X1-NB1 12P3368X012 REV:E 1-Wide I/O Carrier Extender Left
  • EMERSON KJ4001X1-NA1 12P3373X012 REV:C 1-Wide I/O Carrier Extender Right
  • EMERSON A6312/06 Speed and Key Monitor
  • EMERSON KJ4001X1-BE1 8-Wide I/O Carrier
  • EMERSON KJ2005X1-MQ1 KJ2005X1-MQ2 13P0072X082 MQ Controller
  • EMERSON 5X00226G03 - Ovation™ I/O Interface Controller, Electronics Module
  • EMERSON PR6423/00R-010+CON031 Vibration sensor
  • EMERSON 9199-00002 A6120 Control Module
  • Emerson Ovation 1C31234G01 - Ovation™ 16 Channel Compact Digital Input
  • Emerson Ovation KJ3002X1-BF1 12P1732X042 Controller module
  • Emerson Ovation 5X00226G01 I/O Interface Module
  • Emerson Ovation™ Controller Model OCR1100(5X00481G04/5X00226G04)
  • Emerson Ovation 5X00499G01 Digital Input 24Vdc Single 32CH
  • Emerson Ovation 5X00500G01 32-Channel Digital Output Module
  • Emerson ovation VE4001S2T2B4 Analog output card
  • Emerson ovation 5X00501G01 5X00502G01 Ethernet link controller
  • EMERSON A6824R 9199-00098-13 Module
  • EMERSON A6140 9199-00058 Industrial Control Module
  • EMERSON 1C31194G03 Industrial Control Module
  • EMERSON DB1-1 Industrial Control Module
  • EMERSON PMC-IO-ADAPTER I/O module
  • EMERSON L0115012 L0115032 Control module
  • EMERSON PMC-IO-PROZESSOR Process control module
  • EMERSON PMC PROFINET Manage Gigabit Ethernet switches
  • EMERSON A3120022-000 CSI3120 Bearing-Vibration Monitor
  • EMERSON SE3008 KJ2005X1-SQ1 12P6383X032 Controller
  • EMERSON 1000554 Printed circuit board
  • EMERSON PR6423/002-041 Sensor module
  • EMERSON 1C31232G02 Westinghouse control module
  • Abaco TRRM940 Switch
  • Abaco SWE440A Switch
  • Abaco NETernity™ RM984RC Ethernet Switch
  • Abaco NETernity™ GBX411 Ethernet Switch
  • Abaco NETernity™ GBX25
  • Abaco NETernity SWE540A
  • Abaco CP3-GESW8-TM8 Ethernet switch
  • Abaco SWE440S Ethernet switch
  • Abaco SWE450S 100GbE 3U VPX Switch Aligned to SOSA™ Standard
  • Abaco SWE550S 100GbE 6U VPX Switch Aligned to SOSA™ Standard
  • Abaco SPR870A Wideband Digital Receiver/Exciter
  • Abaco SPR507B Serial FPDP XMC/PMC
  • Abaco ICS-1572A Transceiver Module
  • Abaco daq8580 FMV Compression System
  • Abaco VP868 FPGA Card
  • Abaco HPC2812 Rugged 6U VPX High Performance Computer with Dual Intel
  • Abaco VSR347D 3U VPX Rugged Virtual Secure Router
  • Abaco VSR8000 Fully Rugged, COTS System Secure Router
  • Abaco RES3000 Compact, Rugged Ethernet Switches
  • Abaco PMC238 Expansion Card
  • Abaco EXP238 PMC/XMC Expansion Card for XVB603 VME Single Board Computer
  • Abaco VME-REPEAT-A-L VMEbus Repeater Link
  • Abaco VME-4514A VME Analog I/O Input/Output Board
  • Abaco VME-3128A Analog I/O
  • Abaco VME-3125A analog-to-digital Conversion board
  • Abaco VME-3123A VME Analog I/O Input Boards
  • Abaco PMC239/F Analog input/output board
  • Abaco PEX431 Multi-fabric Switch
  • Abaco CPCI-100A-BP 2-slot IndustryPack carrier for 3U CompactPCI
  • Abaco PMC522 Serial Controller
  • Abaco PMC522/FP Serial Controller
  • Abaco VME-2170A Digital Output 32-bit optically isolated
  • Abaco VME-1129 Digital Input Board 128-bit high voltage
  • Abaco IP-OCTALPLUS232 Eight EIA-232 asynchronous serial ports
  • Abaco IP-DIGITAL482 Digital I/O with 48 TTL Channels
  • Abaco PMC523 16-Port Serial Controller
  • EMERSON CE4003S2B1 M-series Traditional I/O
  • EMERSON SE3008 DeltaV™ SQ Controller
  • EMERSON 1C31227G01 - Ovation™ 8 Channel Analog Input
  • EMERSON 1C31224G01 - Ovation™ 8 Channel Analog Input
  • ABB UNS0119A-P,V101 3BHE029154P3 3BHE029153R0101 Digital input
  • ABB 3BDH000050R1 AM811F Battery Module
  • ABB 3ASC25H705-7 Digital output board
  • ABB UDD406A 3BHE041465P201 control board
  • ABB 3BHE014967R0002 UNS 2880B-P,V2: COB PCB Assembled
  • ABB PPC380AE02 HIEE300885R0102 module
  • ABB NU8976A99 HIER466665R0099 Processor Module
  • ABB DIS0006 2RAA005802A0003G Digital Input Module
  • ABB Bailey IMDS003 infi 90 Digital Output Slave Module
  • ABB XO08R1-B4.0 Expand the output relay module
  • ABB VA-MC15-05 Controller module
  • ABB VA-3180-10 Controller module
  • ABB 72395-4-0399123 Excitation module
  • ABB PU516A 3BSE032402R1 Engineering Board - PCI
  • ABB 3BHE044481R0101 3BHE044477P3 PPE091A101 Module
  • ABB UCD224A102 Control unit
  • ABB SNAT603CNT SNAT 603 CNT Motor Control Board
  • ABB SNAT634PAC Drive board
  • ABB UAD149A0011 Servo controller
  • ABB UCD224A103 Industrial controller module
  • ABB 3BHE029154P3/3BHE029153R0101 UNS0119A-P,V101 Processor Module
  • ABB ARCOL 0338 ARCOL 0346 Solid-state motor starter
  • ABB ARCOL 0339 Solid-state motor controller