DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

HISTORY | 60 Years of Laser: What Does the Future Hold? (Part 2)

From:direct | Author:H | Time :2024-11-26 | 483 Browse: | Share:

HISTORY | 60 Years of Laser (2/2) – The laser was invented 60 years ago in 1960. On the occasion of its 60th anniversary, journalists and industry experts tell the impact that laser technology had in Germany and evaluate its future.

On May 6th, 1964, the New York Times featured an interview with Theodor Maiman, the man who had built the first laser in Mai 1960. 60 years later we know how many problems his invention solved. Without lasers, we would have no internet, no computers and no gene sequencing, to name but a few major applications. But it took 60 years and many brilliant minds around the globe to get all these problems solved with lasers.


By Nikolaus Fecht (Dipl.-Ing. at Deutsche Presse-Agentur) and Dr. Andreas Thoss (Managing Director at THOSS Media GmbH)





When Peter Leibinger, chief technology officer of TRUMPF, stated that the laser was now a commodity, it prompted some raised eyebrows. That was at the LASYS trade show in 2013. Since then, the market has continued to boom, with four laser companies topping a billion in sales just three years later. In China, the world’s largest market for lasers, systems up to the kilowatt range compete hard for the lowest price. Has the laser become just another commodity?


Christian Schmitz, chief executive officer for laser technology at TRUMPF, said:


“I would actually welcome that. Commodification means greater quantities, which in turn makes the laser an option for other applications. I see it as a sign that the laser has become a huge success.”


But what about the future for a high-tech pioneer like TRUMPF?


“As a commercial laser manufacturer, we’re also able to compete in larger markets. Nevertheless, we don’t plan to give up on the market for high-end applications.”


For Schmitz, this means, for example, the production of lasers for the semiconductor industry. TRUMPF supplies ASML, the Netherlands provider of photolithography systems, with the world’s most powerful mass-produced laser. TRUMPF dedicated 15 years to the development of this extremely specialized laser application, which is likely to make up more than 10 percent of total sales in 2020. What’s more, it is set to grow further, thereby bucking the overall trend for the machine tool industry.


In November 2020, a team from Zeiss, Trumpf and Fraunhofer IOF were awarded the “Deutscher Zukunftspreis” (German Future Prize) for the development of EUV lithography. A project that is backed by more than 2,000 patents. Schmitz explains:


“To deliver a high-tech project like this, it’s becoming more and more important to find the right partners – people with whom you can exploit the full technological potential of advanced applications like this.”


Make Way for Powerful Precision Lasers


For Tünnermann,


“A prime example of this, in my view, is the development of ultrashort pulse lasers for processing materials. In the 1990s we were able to demonstrate [at the Laser Zentrum Hannover] that ultrashort pulse lasers can be used to texture metals with a precision in the micrometer range but without significant damage to the material. The initial experimentation for this was part of a BMBF joint project. (Partners to this included companies such as Bosch and TRUMPF). This also resulted in a Deutscher Zukunftspreis – in this case, for the team that had worked on the BMBF joint project.”


Now material processing with ultrashort pulses (USP) is lifted to a new level. CAPS, the Fraunhofer Cluster of Excellence Advanced Photon Sources, is coordinated jointly by Fraunhofer IOF and Fraunhofer ILT. CAPS embarks on taking USP lasers from the lab to industrial manufacturing, explai:ns Constantin Häfner, newly appointed director of Fraunhofer ILT


“We’re providing access to these new high-performance USP lasers at an early stage. And we’ve set up facilities both in Jena and Aachen, where companies that are interested can come along and try out these unique laser sources and thereby gain the experience they need to develop their own applications.”


For this purpose, not only the output power has been increased to unprecedented 20 kilowatts. The Fraunhofer experts also improve all technologies along the value chain – from simulation to a host of applications. CAPs, therefore, offers not only a firm bedrock of basic know-how about laser technology but also the opportunity to cooperate with Fraunhofer 13 institutes on the development of new technologies and finally, new applications.


The Additive Manufacturing of Human Organs


Interdisciplinary research has already started. In the field of medicine, for example, super-resolution laser-scanning microscopy – a technology that has been awarded several Nobel prizes – is already in use. In the future, laser technology could also become established in other areas of lab work. At Fraunhofer ILT, researchers are now investigating the interaction between photons and biological cells, Häfner explains:


“We’re working on bioprinting as a way of creating 3D tissue structures. Using biomaterials and living cells, we can now create biological structures that mimic the immunological, cellular and anatomic properties of a human patient. In the long term, it might even be possible to use additive manufacturing to produce customized tissue and organs in the lab. That would help us meet the need for human transplants.”

  • GE SR745-W2-P1-G1-HI-A-L-R-E Feeder protection relay
  • GE IS230TNDSH2A Discrete Output Relay Module Brand
  • GE Fanuc IS200TDBSH2ACC Mark VI Terminal Board Brand
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE VMIVME-1150 Serial Communications Controller
  • GE VMIVME-5576 Fiber-Optic Reflective Memory with Interrupts
  • GE VMIC Isolated Digital Output VMIVME-2170A
  • GE MULTILIN 760 FEEDER MANAGEMENT RELAY 760-P5-G5-S5-HI-A20-R-E
  • GE IS200AEPAH1BKE IS215WEPAH2BB Printed circuit board
  • GE IS210BPPCH1A Mark VIe I/O Pack Processor Card
  • GE IS220PRTDH1A 336A4940CSP6 High-Performance RTD Input Module
  • GE IS220PDIAH1BE 336A5026ADP4 Discrete Input Module
  • GE IS420ESWBH3A IONET Switch Module
  • GE 516TX 336A4940DNP516TX 16-port Ethernet switch
  • GE EVMECNTM13 Embedded control module
  • GE EVPBDP0001 EVPBDP032 control module
  • GE Hydran M2-X Enhanced Monitoring with Extended Sensor Life
  • GE UR6CH Digital I/O Module
  • GE IC695CPU315-CD Central processing unit
  • GE 531X305NTBAMG1 DR Terminal Board
  • GE 531X305NTBALG1 NTB/3TB Terminal Board 531X Series
  • GE 531X305NTBAJG1 NTB/3TB Terminal Board.
  • GE 531X305NTBAHG1 NTB/3TB Terminal Board 531X
  • GE 531X305NTBAEG1 is a PCB that functions as a DR terminal board.
  • General Electric 531X305NTBACG1 NTB/3TB Terminal Board 531X
  • GE Digital Energy D20 Analog Input Module
  • GE 94-164136-001 main board Control board
  • GE 269 PLUS-D/O-100P-125V Digital motor relay
  • GALIL DMC-9940 High-performance motion controller
  • FUJI NP1BS-08 base plate
  • FUJI NP1Y32T09P1 Transistor drain type digital output module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1X3206-A High-speed digital input module
  • FUJI NP1AYH4I-MR current output module
  • FUJI NP1S-22 Power module redundancy
  • FUJI RPXD2150-1T servo drive module
  • FUJI FVR008E7S-2UX Ac frequency converter
  • FUJI Ac frequency converter FVR008E7S-2
  • FUJI FVR004G5B-2 Small general-purpose frequency converter
  • FUJI A50L-2001-0232 Industrial control module
  • FUJI A50L-001-0266#N High-performance servo amplifier
  • Honeywell FS7-2173-2RP Gas sensor
  • Honeywell 10106/2/1 Digital Input Module in Stock
  • FRCE SYS68K CPU-40 B/16 PLC core processor module
  • Foxboro FBM I/O cards PBCO-D8-009
  • Foxboro AD916AE Digital Control System (DCS) Module
  • GE SR750-P5-G5-S5-HI-A20-R-E Multilin Relay
  • FOXBORO H90 H90C9AA0117S Industrial Computer Workstation
  • FOXBORO RH928AW | I/A Series Relay Output Module
  • Foxboro N-2AX+DIO Multi-functional input/output module
  • Foxboro RH924WA FCP280 Fiber Optic Network Adapter
  • FOXBORO H92 Versatile Hardware Component In
  • Foxboro FBM218 P0922VW HART® Communication Redundant Output Interface Module
  • Foxboro E69F-TI2-J-R-S E69F Series Current-To-Pneumatic Signal Converter
  • Foxboro E69F-BI2-S Converter
  • Foxboro H92A049E0700 The host of the DCS control station
  • Foxboro H90C9AA0117S Industrial computer workstation
  • Foxboro RH101AA High-performance industrial control module
  • Foxboro P0922YU FPS400-24 I/A Series Power supply
  • FOXBORO P0973LN Chassis-based managed switch with independent power supply
  • FOXBORO P0926PA Input/output module
  • Fanuc A06B-6050-H402 3 AXIS ANALOG AC SERVO DRIVE
  • FOXBORO L0130AD L0130AE-0H Power module group
  • FOXBORO 0399085B 0303440C+0303458A Combination Control Module
  • FOXBORO SY-0399095E (SY-0303451D+SY-0303460E) Process control board
  • FOXBORO 0399071D 0303440C+0303443B Input/Output (I/O) Module
  • FOXBORO RH924UQ Redundant Controller module
  • FFOXBORO E69F-TI2-S current pneumatic converter
  • FOXBORO FBM219 RH916RH Discrete I/O Module
  • FOXBORO FBM227 P0927AC Module
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E I/O module
  • FOXBORO SY-60399001R SY-60301001RB Industrial Control Module
  • FOXBORO 0399143 SY-0301060R SY-1025115C SY-1025120E Combined control board
  • FOXBORO 873EC-JIPFGZ electrodeless conductivity analyzer
  • FOXBORO P0916PH (High-density HART I/O Module)
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitters
  • FOXBORO Compact FBM240. Redundant with Readback, Discrete
  • FOXBORO FBM208/b, Redundant with Readback, 0 to 20 mA I/O Module
  • FOXBORO FBM201e Analog Input (0 to 20 mA) Interface Modules
  • FOXBORO P0916WG Terminal cable
  • FOXBORO P0926MX 2-Port Splitter
  • FOXBORO AD908JQ High-Frequency Module
  • FOXBORO AD916CC Processor module
  • Foxboro DCS FBM206 Pulse Input Module
  • FOXBORO FBM216 HART® Communication Redundant Input Interface Module
  • Foxboro p0903nu 1×8 unit sub-component module
  • Foxboro P0911SM Industrial control module
  • Foxboro CM902WM I/O module
  • Foxboro CM902WL Power module
  • Foxboro P0972VA Industrial Control Module
  • Foxboro Z-Module Control Processor 270 (ZCP270)
  • Foxboro PO916JS 16-channel terminal block module
  • Foxboro PO911SM High-performance digital/analog input/output module
  • Foxboro P0972PP-NCNI Network Interface Module
  • FOXBORO P0971QZ controller module
  • FOXBORO P0971DP Thermal resistance input/output module
  • FOXBORO P0970VB Cable connector
  • FOXBORO P0970EJ-DNBX Dual-node bus expansion module
  • FOXBORO P0970BP Redundant power supply system
  • FOXBORO P0970BC-DNBI DeviceNet bus interface module
  • FOXBORO P0961FX-CP60S Main control CPU module
  • FOXBORO P0961EF-CP30B Network Interface Unit
  • FOXBORO P0961CA Optical fiber local area network module
  • FOXBORO P0961BD-GW30B gateway processor module
  • FOXBORO P0961BC-CP40B/I/A Series high-performance control processor module
  • FOXBORO P0960JA-CP40 High-performance control processor
  • FOXBORO P0926TM Control module
  • FOXBORO P0916BX Termination Assembly
  • FOXBORO P0916AE P0916AG P0916AW Thermal resistance input type DCS card module
  • FOXBORO P0916AC FOXBORO distributed control system (DCS) compression terminal assembly
  • FOXBORO P0912CB High-performance interface module
  • FOXBORO P0911VJ Thermal resistance input output module
  • FOXBORO P0911QH-A High-precision module
  • FOXBORO P0911QB-C P0911QC-C Thermal resistance input/output module
  • FOXBORO P0904BH P0904FH P0904HB Distributed Control system (DCS) module
  • FOXBORO P0903ZP P0903ZQ Embedded System Debugging Module
  • Foxboro P0903ZL P0903ZN Industrial power module
  • Foxboro P0903ZE I/A Series Fieldbus Isolator Module
  • FOXBORO P0903NW Industrial Control Module
  • FFOXBORO P0903NQ Industrial power module
  • FFOXBORO P0903AA Control Module
  • FOXBORO P0400DL Digital output module
  • FOXBORO P0400BJ Digital output module
  • FOXBORO GW30 industrial control module
  • FOXBORO FBM231 Communication Output Module
  • FOXBORO Fieldbus Communications Module, FCM10Ef
  • FOXBORO Fieldbus Communications Module, FCM10E