DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

ABBIndustrial Networks Connecting Controllers via OPC

From:ABB | Author:LIAO | Time :2025-08-27 | 836 Browse: | Share:

is 8 milliseconds for all tests (see Table 4.2). It shows clearly, that the test system variation with Woodhead PROFIBUS returns the best round-trip times, while

the Beckhoff approach is worthless for our task. Moreover, its ability of emulating several slaves saves the effort of inserting multiple PCI cards. Beside all these

advantages, the Woodhead PROFIBUS approach causes the word swap problem,

which cannot be solved without adding program code at this time.

Whereas MMS also meets our requirements, it is about two times slower than the

Woodhead approach. Furthermore, the standard deviation of the RTTs measured

is vastly greater with MMS than with PROFIBUS. This is remarkable, since our

test were made with a direct Ethernet link (crossed cable). As the performance

of MMS depends on network traffic and AC800M’s CPU load, it is to be expected

that communication using MMS will get slower and even less deterministic in a real

environment

Although on the first spot Test 5 seems to be useless, this is not the case at

all. Firstly, it proved that the system basically works even with this amount of

variables. Secondly, while Test 4 is the most relevant evaluation concerning the

real requirements, Test 5 was intended to look for the limits of the current system,

Chapter 6

Redundancy

This chapter will provide theoretical considerations on redundancy. Since the

Woodhead PROFIBUS solution was the most promising approach, our considerations are based on this test system variation and the amount of signals according

to Test 4, which resembles the real requirements.

6.1 Terms and Concepts

Please notice that when talking about redundant components in this context, we

mean duplication if not stated otherwise. The term redundancy does not define the

number of redundant components in general.

6.1.1 Levels of Redundancy

There is a large variety within the levels of redundancy. While it is possible to

double only the most important or critical components, one can also make a whole

system redundant. This usually allows the concurrent outage of several different

parts of a system (e.g. a processor module and a bus line) without interrupting

the whole system. An outage can be an unplanned failure of a component but also

a planned maintenance action. Security relevant parts like protection systems are

often even implemented three times or more.

It is also important to know that redundancy can be implemented on different

levels in communication. Most redundancy hardware devices or software programs

that are able to switch between different connections work on a protocol level,

that is, they recognize errors in the communication protocol e.g. if a device fails

or the connection is broken. They are not able to identify errors in the transported data, though. In contrary, redundancy logic on application level checks the

values/contents of the transported data, and therefore also detects errors if the protocol itself runs correctly. It is also possible to combine these approaches, e.g. if an

application level program is able to force a switchover in a physical switch. A typical specification for the maximum switchover time in the turbine control business

is 20 ms.

6.1.2 Master-, Slave- and Line-Redundancy

In bus systems there are three aspects of redundancy which can be combined arbitrarily. Since the outage of a non-redundant bus master in a classical master/slave

bus system like PROFIBUS interrupts any communication, it is very common to

implement bus master redundancy. In contrary, slave redundancy can be implemented depending on the importance of a specific slave. For real master or slave

redundancy it is of course necessary to implement two completely independent

communication stacks [36]. In practice this is normally done by using two identical

communication interfaces. The two interfaces communicate directly or via a third

component (e.g. the processor module) to be activated or deactivated and exchange

configuration data. Line redundancy means the multiple presences of physical media. A redundant master/slave bus system is showed in Figure 6.3. ABB offers a

device called RLM01 to connect single-line PROFIBUS slaves to a line redundant

layout, allowing reducing the non-redundant part to a short distance. Since the

device needs to copy data, it causes a delay, but this is very small compared to our

cycle times (about 1.5 µs at 12 Mbit/s).

6.1.3 Transparency

For the different components of a redundant system it makes a difference whether

the redundant pairs behave in a transparent manner or not. If they behave transparently, the other parts recognize a redundant pair as one single device and will

not have to do anything; at the most there will be a more or less drastic pause due

to the switchover. If redundant components behave not transparently, it is usually needed that nearby components are intelligent enough to check which device is

working correctly.

For redundant components which behave transparently it is inevitable to have

a redundancy communication (RedCom), which can be a direct link or be managed

by a superior component. This connection is on one hand needed to determine

which component is the active one and which is in stand-by mode. On the other

  • ENTERASYS A4H254-8F8T Ethernet switch
  • ENTERASYS C2RPS-CHAS2 SecureStack c2 Redundant power supply chassis
  • ENTERASYS A2H124-24 Ethernet edge switch
  • EMG LID43.03 Reference voltage source
  • EMERSON PR6426010-110+C0N021916-240 32mm Eddy Current Sensor
  • EMERSON PR6423/011-110+C0N021 Eddy Current Signal Converter
  • EMERSON VE4003S2B1 DeltaV™ M-series Traditional I/O
  • EMERSON 2500M/AI4UNIV analog input module
  • EMERSON PMCspan PMC Expansion Mezzanine
  • EMERSON PR6424/011-140 16mm Eddy Current Sensor
  • EMERSON KJ3242X1-BK1 12P4711X042 S-Series H1 Card
  • EMERSON 960132-01 FX-316 Positioning Servo Drive 230 VAC
  • EMERSON KJ4006X1-BD1 Interface Terminal Block
  • EMERSON 1C31181G01 module
  • EMERSON CE4003S2B6 I/O Termination Block
  • EMERSON KJ4001X1-CK1 40-Pin Mass Termination Block
  • EMERSON VE4012S2B1 Module
  • EMERSON KL4103X1-BA1 CHARMs Smart Logic Solver Carrier
  • EMERSON A6370D/DP Overspeed Protection Monitor
  • EMERSON P188.R2 Industrial interface module
  • EMERSON VE3008 CE3008 KJ2005X1-MQ1 12P6381X042 MQ Controller
  • EMERSON TPMC917 4MB SRAM with Battery Backup and 4 Channel RS232
  • EMERSON P152.R4 Multifunctional module
  • EMERSON DA7281520 P152 Processor board
  • EMERSON PR6423/008-110 8mm Eddy Current Sensor
  • EMERSON PR6423/000-131 8mm Eddy Current Sensor
  • EMERSON MVME61006E-0163R VMEbus Single-Board Computer
  • EMERSON Ovation 5X00453G01 Remote I/O Node Controller Module
  • EMERSON 5X00070G04 Analog input
  • EMERSON Ovation 5X00070G01 Analog Input Module
  • EMERSON Ovation 5X00790G01 Compact Controller Module
  • EMERSON 5X00846G01 HART analog output module
  • EMERSON 1C31113G01 Digital output module (5-60VDC)
  • EMERSON KJ4110X1-BA1 I/O terminal module
  • EMERSON CSI3125 A3125/022-020 Shaft-Vibration Monitor
  • EMERSON 5X00273G01 Digital output module
  • EMERSON KJ4001X1-NB1 12P3368X012 REV:E 1-Wide I/O Carrier Extender Left
  • EMERSON KJ4001X1-NA1 12P3373X012 REV:C 1-Wide I/O Carrier Extender Right
  • EMERSON A6312/06 Speed and Key Monitor
  • EMERSON KJ4001X1-BE1 8-Wide I/O Carrier
  • EMERSON KJ2005X1-MQ1 KJ2005X1-MQ2 13P0072X082 MQ Controller
  • EMERSON 5X00226G03 - Ovation™ I/O Interface Controller, Electronics Module
  • EMERSON PR6423/00R-010+CON031 Vibration sensor
  • EMERSON 9199-00002 A6120 Control Module
  • Emerson Ovation 1C31234G01 - Ovation™ 16 Channel Compact Digital Input
  • Emerson Ovation KJ3002X1-BF1 12P1732X042 Controller module
  • Emerson Ovation 5X00226G01 I/O Interface Module
  • Emerson Ovation™ Controller Model OCR1100(5X00481G04/5X00226G04)
  • Emerson Ovation 5X00499G01 Digital Input 24Vdc Single 32CH
  • Emerson Ovation 5X00500G01 32-Channel Digital Output Module
  • Emerson ovation VE4001S2T2B4 Analog output card
  • Emerson ovation 5X00501G01 5X00502G01 Ethernet link controller
  • EMERSON A6824R 9199-00098-13 Module
  • EMERSON A6140 9199-00058 Industrial Control Module
  • EMERSON 1C31194G03 Industrial Control Module
  • EMERSON DB1-1 Industrial Control Module
  • EMERSON PMC-IO-ADAPTER I/O module
  • EMERSON L0115012 L0115032 Control module
  • EMERSON PMC-IO-PROZESSOR Process control module
  • EMERSON PMC PROFINET Manage Gigabit Ethernet switches
  • EMERSON A3120022-000 CSI3120 Bearing-Vibration Monitor
  • EMERSON SE3008 KJ2005X1-SQ1 12P6383X032 Controller
  • EMERSON 1000554 Printed circuit board
  • EMERSON PR6423/002-041 Sensor module
  • EMERSON 1C31232G02 Westinghouse control module
  • Abaco TRRM940 Switch
  • Abaco SWE440A Switch
  • Abaco NETernity™ RM984RC Ethernet Switch
  • Abaco NETernity™ GBX411 Ethernet Switch
  • Abaco NETernity™ GBX25
  • Abaco NETernity SWE540A
  • Abaco CP3-GESW8-TM8 Ethernet switch
  • Abaco SWE440S Ethernet switch
  • Abaco SWE450S 100GbE 3U VPX Switch Aligned to SOSA™ Standard
  • Abaco SWE550S 100GbE 6U VPX Switch Aligned to SOSA™ Standard
  • Abaco SPR870A Wideband Digital Receiver/Exciter
  • Abaco SPR507B Serial FPDP XMC/PMC
  • Abaco ICS-1572A Transceiver Module
  • Abaco daq8580 FMV Compression System
  • Abaco VP868 FPGA Card
  • Abaco HPC2812 Rugged 6U VPX High Performance Computer with Dual Intel
  • Abaco VSR347D 3U VPX Rugged Virtual Secure Router
  • Abaco VSR8000 Fully Rugged, COTS System Secure Router
  • Abaco RES3000 Compact, Rugged Ethernet Switches
  • Abaco PMC238 Expansion Card
  • Abaco EXP238 PMC/XMC Expansion Card for XVB603 VME Single Board Computer
  • Abaco VME-REPEAT-A-L VMEbus Repeater Link
  • Abaco VME-4514A VME Analog I/O Input/Output Board
  • Abaco VME-3128A Analog I/O
  • Abaco VME-3125A analog-to-digital Conversion board
  • Abaco VME-3123A VME Analog I/O Input Boards
  • Abaco PMC239/F Analog input/output board
  • Abaco PEX431 Multi-fabric Switch
  • Abaco CPCI-100A-BP 2-slot IndustryPack carrier for 3U CompactPCI
  • Abaco PMC522 Serial Controller
  • Abaco PMC522/FP Serial Controller
  • Abaco VME-2170A Digital Output 32-bit optically isolated
  • Abaco VME-1129 Digital Input Board 128-bit high voltage
  • Abaco IP-OCTALPLUS232 Eight EIA-232 asynchronous serial ports
  • Abaco IP-DIGITAL482 Digital I/O with 48 TTL Channels
  • Abaco PMC523 16-Port Serial Controller
  • EMERSON CE4003S2B1 M-series Traditional I/O
  • EMERSON SE3008 DeltaV™ SQ Controller
  • EMERSON 1C31227G01 - Ovation™ 8 Channel Analog Input
  • EMERSON 1C31224G01 - Ovation™ 8 Channel Analog Input
  • ABB UNS0119A-P,V101 3BHE029154P3 3BHE029153R0101 Digital input
  • ABB 3BDH000050R1 AM811F Battery Module
  • ABB 3ASC25H705-7 Digital output board
  • ABB UDD406A 3BHE041465P201 control board
  • ABB 3BHE014967R0002 UNS 2880B-P,V2: COB PCB Assembled
  • ABB PPC380AE02 HIEE300885R0102 module
  • ABB NU8976A99 HIER466665R0099 Processor Module
  • ABB DIS0006 2RAA005802A0003G Digital Input Module
  • ABB Bailey IMDS003 infi 90 Digital Output Slave Module
  • ABB XO08R1-B4.0 Expand the output relay module
  • ABB VA-MC15-05 Controller module
  • ABB VA-3180-10 Controller module
  • ABB 72395-4-0399123 Excitation module
  • ABB PU516A 3BSE032402R1 Engineering Board - PCI
  • ABB 3BHE044481R0101 3BHE044477P3 PPE091A101 Module
  • ABB UCD224A102 Control unit
  • ABB SNAT603CNT SNAT 603 CNT Motor Control Board
  • ABB SNAT634PAC Drive board
  • ABB UAD149A0011 Servo controller
  • ABB UCD224A103 Industrial controller module
  • ABB 3BHE029154P3/3BHE029153R0101 UNS0119A-P,V101 Processor Module
  • ABB ARCOL 0338 ARCOL 0346 Solid-state motor starter
  • ABB ARCOL 0339 Solid-state motor controller