DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

ABBIndustrial Networks Connecting Controllers via OPC

From:ABB | Author:LIAO | Time :2025-08-27 | 823 Browse: | Share:

provided they are situated in different communication interfaces. That is, multiple

interfaces can receive the same CDP. The cycle time determines how often the data

of the CDP is transferred on the bus. When a CDP is transferred on the Advant

Fieldbus 100, the interval between consecutive transfers is always the same, the

cycle time. Thus, process data transfer is deterministic, regardless of which other

tasks the communication interfaces perform.

Figure 2.7: DataSet Peripheral and DAT Elements [12]

In AC160, one so-called DataSet Peripheral (DSP) can reference up to eight

32-bit values called Database Elements (DATs). Each DSP uses one CDP to be

transported on the AF100, and can therefore be configured for example with an

individual cycle time. In addition to cyclic message transfer, AF100 offers the

possibilities to send event-based messages using the Service Data Protocol (SDP).

This does not influence the cyclic data transfer at all. At a bus length up to 2000m

it is therefore necessary to keep the cyclic bus load under 70% in order to have

extra space for messages (depicted as gray fields in Figure 2.6) [12].

2.4.2 PROFIBUS DPV0

PROFIBUS (PROcess FIeld BUS) is one of the world’s most widely used fieldbuses and was launched in 1989 by a consortium of companies and institutions.

Until today it was continuously enhanced and extended [13]. It is available in three

variations:

• PROFIBUS-FMS (Field Message Specification) was the first PROFIBUS

communications protocol. It offers sophisticated functionality but is no longer

officially supported.

• PROFIBUS-DP (Decentralized Peripherals) has been designed for fast cyclic

data exchange at field level and is today often referred to DPV0. This specification was extended with DPV1 for acyclic and alarm communication and

DPV2 for slave-to-slave and isochronous communication as well as synchronized system time.

• PROFIBUS-PA (Process Automation) is used for the connection of devices

to a superior process control system. It supports intrinsic safe transmission

[14].

For this thesis, only the DPV0 protocol specification is relevant. Therefore,

when writing PROFIBUS, we are always referring to this specification. DPV0

allows the cyclic exchange of data from a master (initiator) to slaves and vice versa

at a high data rate up to 12 Mbit/s. Communication is organized in input and

output modules of defined size (e.g. one word or four bytes) for every slave, which

then are transmitted completely (non differential) once per cycle. The cycle time

depends on the number of bytes and slaves as well as on timeout settings. The

specified input and output data of one slave is limited to 244 byte each. While the

physical connection can also be established using fiber optics, we used the more

conventional EIA-485 electrical twisted pair connection.

PROFIBUS slaves come with a GSD-File (“Geraete-Stammdaten” in German)

which is an electronic device specification. Most PROFIBUS master systems allow

to directly import the GSD-Files of previously unknown slaves in order to include

them in the bus planning. That makes it easy and comfortable to build PROFIBUS

networks with slaves from different vendors.

2.4.3 MMS

The Manufacturing Message Specification MMS is an application level protocol developed during the eighties by General Motors. Its main goal was to unify communication to controllers independent of manufacturers. Other automobile, aerospace

and PLC companies adopted the protocol and since 1990 MMS is standardized in

ISO/IEC 9506 [15]. While being very general and open, MMS is reputed as heavy,

complicated and costly. Nevertheless MMS was an important step in development

and due to its independence of the underlying communication protocol it is still

being used today. Furthermore it worked as a reference model and has influenced

other protocols. Since 2002 the standard IEC 61850 for “Communication networks

and systems in substations” based on TCP/IP over Ethernet defines the mapping

onto MMS [16].

MMS is used as the main communication protocol for AC800M. On one hand,

this is the communication between controller and the superior control and engineering system, on the other hand the communication between several controllers

of this type as shown in Figure 2.8. One telegram can reach a size up to 1024 bytes

including the header, containing a maximum of 159 integers or 136 floats [17]

2.5 Personal Computer

For our tests we used a personal computer containing an Intel Pentium 4 processor

at a speed of 3.2 GHz and 2 GB memory running a Microsoft Windows Server 2003

R2 operating system

2.5.1 800xA and Development Environment

In order to setup, program and run ABB components, an Industrial IT 800xA

environment was installed on the personal computer. Besides a lot of additional

resources, this installation also encompasses the application development systems

for both controller types.

The development environment to program the AC160 was Control Builder A

(CBA) consisting of Application Builder, Function Chart Builder and Bus Configuration Builder. To program the AC800M controller, the engineering tool Control

Builder M was used.

2.5.2 AF100 Communication

To establish connection to the AF100 fieldbus, we inserted an ABB CI527 PCI card

  • ENTERASYS A4H254-8F8T Ethernet switch
  • ENTERASYS C2RPS-CHAS2 SecureStack c2 Redundant power supply chassis
  • ENTERASYS A2H124-24 Ethernet edge switch
  • EMG LID43.03 Reference voltage source
  • EMERSON PR6426010-110+C0N021916-240 32mm Eddy Current Sensor
  • EMERSON PR6423/011-110+C0N021 Eddy Current Signal Converter
  • EMERSON VE4003S2B1 DeltaV™ M-series Traditional I/O
  • EMERSON 2500M/AI4UNIV analog input module
  • EMERSON PMCspan PMC Expansion Mezzanine
  • EMERSON PR6424/011-140 16mm Eddy Current Sensor
  • EMERSON KJ3242X1-BK1 12P4711X042 S-Series H1 Card
  • EMERSON 960132-01 FX-316 Positioning Servo Drive 230 VAC
  • EMERSON KJ4006X1-BD1 Interface Terminal Block
  • EMERSON 1C31181G01 module
  • EMERSON CE4003S2B6 I/O Termination Block
  • EMERSON KJ4001X1-CK1 40-Pin Mass Termination Block
  • EMERSON VE4012S2B1 Module
  • EMERSON KL4103X1-BA1 CHARMs Smart Logic Solver Carrier
  • EMERSON A6370D/DP Overspeed Protection Monitor
  • EMERSON P188.R2 Industrial interface module
  • EMERSON VE3008 CE3008 KJ2005X1-MQ1 12P6381X042 MQ Controller
  • EMERSON TPMC917 4MB SRAM with Battery Backup and 4 Channel RS232
  • EMERSON P152.R4 Multifunctional module
  • EMERSON DA7281520 P152 Processor board
  • EMERSON PR6423/008-110 8mm Eddy Current Sensor
  • EMERSON PR6423/000-131 8mm Eddy Current Sensor
  • EMERSON MVME61006E-0163R VMEbus Single-Board Computer
  • EMERSON Ovation 5X00453G01 Remote I/O Node Controller Module
  • EMERSON 5X00070G04 Analog input
  • EMERSON Ovation 5X00070G01 Analog Input Module
  • EMERSON Ovation 5X00790G01 Compact Controller Module
  • EMERSON 5X00846G01 HART analog output module
  • EMERSON 1C31113G01 Digital output module (5-60VDC)
  • EMERSON KJ4110X1-BA1 I/O terminal module
  • EMERSON CSI3125 A3125/022-020 Shaft-Vibration Monitor
  • EMERSON 5X00273G01 Digital output module
  • EMERSON KJ4001X1-NB1 12P3368X012 REV:E 1-Wide I/O Carrier Extender Left
  • EMERSON KJ4001X1-NA1 12P3373X012 REV:C 1-Wide I/O Carrier Extender Right
  • EMERSON A6312/06 Speed and Key Monitor
  • EMERSON KJ4001X1-BE1 8-Wide I/O Carrier
  • EMERSON KJ2005X1-MQ1 KJ2005X1-MQ2 13P0072X082 MQ Controller
  • EMERSON 5X00226G03 - Ovation™ I/O Interface Controller, Electronics Module
  • EMERSON PR6423/00R-010+CON031 Vibration sensor
  • EMERSON 9199-00002 A6120 Control Module
  • Emerson Ovation 1C31234G01 - Ovation™ 16 Channel Compact Digital Input
  • Emerson Ovation KJ3002X1-BF1 12P1732X042 Controller module
  • Emerson Ovation 5X00226G01 I/O Interface Module
  • Emerson Ovation™ Controller Model OCR1100(5X00481G04/5X00226G04)
  • Emerson Ovation 5X00499G01 Digital Input 24Vdc Single 32CH
  • Emerson Ovation 5X00500G01 32-Channel Digital Output Module
  • Emerson ovation VE4001S2T2B4 Analog output card
  • Emerson ovation 5X00501G01 5X00502G01 Ethernet link controller
  • EMERSON A6824R 9199-00098-13 Module
  • EMERSON A6140 9199-00058 Industrial Control Module
  • EMERSON 1C31194G03 Industrial Control Module
  • EMERSON DB1-1 Industrial Control Module
  • EMERSON PMC-IO-ADAPTER I/O module
  • EMERSON L0115012 L0115032 Control module
  • EMERSON PMC-IO-PROZESSOR Process control module
  • EMERSON PMC PROFINET Manage Gigabit Ethernet switches
  • EMERSON A3120022-000 CSI3120 Bearing-Vibration Monitor
  • EMERSON SE3008 KJ2005X1-SQ1 12P6383X032 Controller
  • EMERSON 1000554 Printed circuit board
  • EMERSON PR6423/002-041 Sensor module
  • EMERSON 1C31232G02 Westinghouse control module
  • Abaco TRRM940 Switch
  • Abaco SWE440A Switch
  • Abaco NETernity™ RM984RC Ethernet Switch
  • Abaco NETernity™ GBX411 Ethernet Switch
  • Abaco NETernity™ GBX25
  • Abaco NETernity SWE540A
  • Abaco CP3-GESW8-TM8 Ethernet switch
  • Abaco SWE440S Ethernet switch
  • Abaco SWE450S 100GbE 3U VPX Switch Aligned to SOSA™ Standard
  • Abaco SWE550S 100GbE 6U VPX Switch Aligned to SOSA™ Standard
  • Abaco SPR870A Wideband Digital Receiver/Exciter
  • Abaco SPR507B Serial FPDP XMC/PMC
  • Abaco ICS-1572A Transceiver Module
  • Abaco daq8580 FMV Compression System
  • Abaco VP868 FPGA Card
  • Abaco HPC2812 Rugged 6U VPX High Performance Computer with Dual Intel
  • Abaco VSR347D 3U VPX Rugged Virtual Secure Router
  • Abaco VSR8000 Fully Rugged, COTS System Secure Router
  • Abaco RES3000 Compact, Rugged Ethernet Switches
  • Abaco PMC238 Expansion Card
  • Abaco EXP238 PMC/XMC Expansion Card for XVB603 VME Single Board Computer
  • Abaco VME-REPEAT-A-L VMEbus Repeater Link
  • Abaco VME-4514A VME Analog I/O Input/Output Board
  • Abaco VME-3128A Analog I/O
  • Abaco VME-3125A analog-to-digital Conversion board
  • Abaco VME-3123A VME Analog I/O Input Boards
  • Abaco PMC239/F Analog input/output board
  • Abaco PEX431 Multi-fabric Switch
  • Abaco CPCI-100A-BP 2-slot IndustryPack carrier for 3U CompactPCI
  • Abaco PMC522 Serial Controller
  • Abaco PMC522/FP Serial Controller
  • Abaco VME-2170A Digital Output 32-bit optically isolated
  • Abaco VME-1129 Digital Input Board 128-bit high voltage
  • Abaco IP-OCTALPLUS232 Eight EIA-232 asynchronous serial ports
  • Abaco IP-DIGITAL482 Digital I/O with 48 TTL Channels
  • Abaco PMC523 16-Port Serial Controller
  • EMERSON CE4003S2B1 M-series Traditional I/O
  • EMERSON SE3008 DeltaV™ SQ Controller
  • EMERSON 1C31227G01 - Ovation™ 8 Channel Analog Input
  • EMERSON 1C31224G01 - Ovation™ 8 Channel Analog Input
  • ABB UNS0119A-P,V101 3BHE029154P3 3BHE029153R0101 Digital input
  • ABB 3BDH000050R1 AM811F Battery Module
  • ABB 3ASC25H705-7 Digital output board
  • ABB UDD406A 3BHE041465P201 control board
  • ABB 3BHE014967R0002 UNS 2880B-P,V2: COB PCB Assembled
  • ABB PPC380AE02 HIEE300885R0102 module
  • ABB NU8976A99 HIER466665R0099 Processor Module
  • ABB DIS0006 2RAA005802A0003G Digital Input Module
  • ABB Bailey IMDS003 infi 90 Digital Output Slave Module
  • ABB XO08R1-B4.0 Expand the output relay module
  • ABB VA-MC15-05 Controller module
  • ABB VA-3180-10 Controller module
  • ABB 72395-4-0399123 Excitation module
  • ABB PU516A 3BSE032402R1 Engineering Board - PCI
  • ABB 3BHE044481R0101 3BHE044477P3 PPE091A101 Module
  • ABB UCD224A102 Control unit
  • ABB SNAT603CNT SNAT 603 CNT Motor Control Board
  • ABB SNAT634PAC Drive board
  • ABB UAD149A0011 Servo controller
  • ABB UCD224A103 Industrial controller module
  • ABB 3BHE029154P3/3BHE029153R0101 UNS0119A-P,V101 Processor Module
  • ABB ARCOL 0338 ARCOL 0346 Solid-state motor starter
  • ABB ARCOL 0339 Solid-state motor controller