DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

While Cyberattacks Are Inevitable, Resilience Is Vital

From:automation | Author:H | Time :2024-11-28 | 242 Browse: | Share:

and leveraging new technologies requires minimal investment, as most companies already have the human and technical resources necessary,” he said.

Useful new technologies include:  

  • AI and machine learning. AI and machine learning bring significant advances in securing operational technology environments. AI leverages behavioral analysis to detect anomalous activities within OT systems that may indicate a breach. By continuously monitoring equipment and user behavior, AI can identify deviations from normal patterns, alerting security teams to potential threats before they cause significant harm. Machine learning models can predict and respond to emerging threats in real-time within OT environments offering threat intelligence. These models analyze vast amounts of data from sensors and control systems to identify patterns and indicators of compromise, allowing organizations to proactively defend against sophisticated attacks.

  • Zero trust architecture. Zero trust architecture enhances security in OT environments by assuming no user or system is inherently trustworthy.

  • Identity and access management (IAM). IAM ensures that only authorized individuals have access to critical OT systems. By enforcing strict identity verification and access controls, IAM reduces the risk of unauthorized access and potential breaches in the OT environment.

  • Micro-segmentation. Micro-segmentation breaks down OT networks into smaller, isolated segments to limit the spread of potential breaches. This approach contains threats within confined areas, preventing them from moving laterally across the OT network.

  • Security orchestration, automation and response (SOAR). SOAR technologies streamline and automate security operations in OT environments, enhancing an organization’s ability to respond to incidents swiftly and effectively. By integrating various security tools and processes, SOAR improves the efficiency and coordination of incident response efforts, reducing the impact of cyberattacks on critical OT systems.

 

Understand consequences

Cybersecurity is all about understanding risk and applying the basic controls and sprinkling in new technologies to keep the bad guys out and keeping the system up and running by eliminating as much unplanned downtime as possible.

“Cybersecurity is a risk game—as long as computers are required to deliver critical products and services, they will have some vulnerability to an attack,” Carrigan said. “Risk is a simple equation: Risk = Likelihood x Consequence. Most of our investments have been in reducing the ‘likelihood’ side of the equation. The future of OT cybersecurity will be in reducing the consequences of cyberattacks—specifically, how to minimize the impact of infiltration and restore operations within an acceptable period.”

Manufacturers must understand their risk appetite and know what and where their organization’s crown jewels are and how to protect them. “Applying the same security practices to all OT assets is not practical—some are more important than others, even within the same company and the same OT network,” Carrigan said.

Remaining resilient to a cyber incident—any kind of incident—means manufacturers must apply the basics, sprinkle in some new technologies and plan, test, revise and then start that process all over again. Don’t live with a false sense of security. Creating and following a resilience plan will keep your organization up and running while remaining productive and profitable.


Resilience best practices

It is no secret cyberattacks of all types continue to increase as certain industrial sectors remain low-hanging fruit for attackers. The following are some basic best practices to stay ahead of attackers:

  • Fight to remain resilient.

  • Understand your risk equation.

  • Understand the likelihood and the consequence of an attack.

  • Train, train and then train some more; get specific OT training.

  • Re-evaluate your system and understand the dynamic nature of cybersecurity.

  • Increase visibility.

  • Take stock of what you have on your system.

  • Understand what is talking to what.

  • Create a culture of collaboration.

  • Communicate.


Final thoughts

In the end, remaining resilient is a program and not just a slogan. No matter what the status is of any security program, it must keep evolving to get better and better because attackers are not standing pat. Whether it is ransomware, a terrorist or a hacktivist attack, a threat actor wants to get in, get what they can, and then get out successfully.

A successful resilience program always falls back on applying solid technology, understanding and communicating the process, and having smart workers understand what to do at the right time.

This feature originally appeared in AUTOMATION 2024: 1st Annual OT Cybersecurity Trends Report.


  • GE SR745-W2-P1-G1-HI-A-L-R-E Feeder protection relay
  • GE IS230TNDSH2A Discrete Output Relay Module Brand
  • GE Fanuc IS200TDBSH2ACC Mark VI Terminal Board Brand
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE VMIVME-1150 Serial Communications Controller
  • GE VMIVME-5576 Fiber-Optic Reflective Memory with Interrupts
  • GE VMIC Isolated Digital Output VMIVME-2170A
  • GE MULTILIN 760 FEEDER MANAGEMENT RELAY 760-P5-G5-S5-HI-A20-R-E
  • GE IS200AEPAH1BKE IS215WEPAH2BB Printed circuit board
  • GE IS210BPPCH1A Mark VIe I/O Pack Processor Card
  • GE IS220PRTDH1A 336A4940CSP6 High-Performance RTD Input Module
  • GE IS220PDIAH1BE 336A5026ADP4 Discrete Input Module
  • GE IS420ESWBH3A IONET Switch Module
  • GE 516TX 336A4940DNP516TX 16-port Ethernet switch
  • GE EVMECNTM13 Embedded control module
  • GE EVPBDP0001 EVPBDP032 control module
  • GE Hydran M2-X Enhanced Monitoring with Extended Sensor Life
  • GE UR6CH Digital I/O Module
  • GE IC695CPU315-CD Central processing unit
  • GE 531X305NTBAMG1 DR Terminal Board
  • GE 531X305NTBALG1 NTB/3TB Terminal Board 531X Series
  • GE 531X305NTBAJG1 NTB/3TB Terminal Board.
  • GE 531X305NTBAHG1 NTB/3TB Terminal Board 531X
  • GE 531X305NTBAEG1 is a PCB that functions as a DR terminal board.
  • General Electric 531X305NTBACG1 NTB/3TB Terminal Board 531X
  • GE Digital Energy D20 Analog Input Module
  • GE 94-164136-001 main board Control board
  • GE 269 PLUS-D/O-100P-125V Digital motor relay
  • GALIL DMC-9940 High-performance motion controller
  • FUJI NP1BS-08 base plate
  • FUJI NP1Y32T09P1 Transistor drain type digital output module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1X3206-A High-speed digital input module
  • FUJI NP1AYH4I-MR current output module
  • FUJI NP1S-22 Power module redundancy
  • FUJI RPXD2150-1T servo drive module
  • FUJI FVR008E7S-2UX Ac frequency converter
  • FUJI Ac frequency converter FVR008E7S-2
  • FUJI FVR004G5B-2 Small general-purpose frequency converter
  • FUJI A50L-2001-0232 Industrial control module
  • FUJI A50L-001-0266#N High-performance servo amplifier
  • Honeywell FS7-2173-2RP Gas sensor
  • Honeywell 10106/2/1 Digital Input Module in Stock
  • FRCE SYS68K CPU-40 B/16 PLC core processor module
  • Foxboro FBM I/O cards PBCO-D8-009
  • Foxboro AD916AE Digital Control System (DCS) Module
  • GE SR750-P5-G5-S5-HI-A20-R-E Multilin Relay
  • FOXBORO H90 H90C9AA0117S Industrial Computer Workstation
  • FOXBORO RH928AW | I/A Series Relay Output Module
  • Foxboro N-2AX+DIO Multi-functional input/output module
  • Foxboro RH924WA FCP280 Fiber Optic Network Adapter
  • FOXBORO H92 Versatile Hardware Component In
  • Foxboro FBM218 P0922VW HART® Communication Redundant Output Interface Module
  • Foxboro E69F-TI2-J-R-S E69F Series Current-To-Pneumatic Signal Converter
  • Foxboro E69F-BI2-S Converter
  • Foxboro H92A049E0700 The host of the DCS control station
  • Foxboro H90C9AA0117S Industrial computer workstation
  • Foxboro RH101AA High-performance industrial control module
  • Foxboro P0922YU FPS400-24 I/A Series Power supply
  • FOXBORO P0973LN Chassis-based managed switch with independent power supply
  • FOXBORO P0926PA Input/output module
  • Fanuc A06B-6050-H402 3 AXIS ANALOG AC SERVO DRIVE
  • FOXBORO L0130AD L0130AE-0H Power module group
  • FOXBORO 0399085B 0303440C+0303458A Combination Control Module
  • FOXBORO SY-0399095E (SY-0303451D+SY-0303460E) Process control board
  • FOXBORO 0399071D 0303440C+0303443B Input/Output (I/O) Module
  • FOXBORO RH924UQ Redundant Controller module
  • FFOXBORO E69F-TI2-S current pneumatic converter
  • FOXBORO FBM219 RH916RH Discrete I/O Module
  • FOXBORO FBM227 P0927AC Module
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E I/O module
  • FOXBORO SY-60399001R SY-60301001RB Industrial Control Module
  • FOXBORO 0399143 SY-0301060R SY-1025115C SY-1025120E Combined control board
  • FOXBORO 873EC-JIPFGZ electrodeless conductivity analyzer
  • FOXBORO P0916PH (High-density HART I/O Module)
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitters
  • FOXBORO Compact FBM240. Redundant with Readback, Discrete
  • FOXBORO FBM208/b, Redundant with Readback, 0 to 20 mA I/O Module
  • FOXBORO FBM201e Analog Input (0 to 20 mA) Interface Modules
  • FOXBORO P0916WG Terminal cable
  • FOXBORO P0926MX 2-Port Splitter
  • FOXBORO AD908JQ High-Frequency Module
  • FOXBORO AD916CC Processor module
  • Foxboro DCS FBM206 Pulse Input Module
  • FOXBORO FBM216 HART® Communication Redundant Input Interface Module
  • Foxboro p0903nu 1×8 unit sub-component module
  • Foxboro P0911SM Industrial control module
  • Foxboro CM902WM I/O module
  • Foxboro CM902WL Power module
  • Foxboro P0972VA Industrial Control Module
  • Foxboro Z-Module Control Processor 270 (ZCP270)
  • Foxboro PO916JS 16-channel terminal block module
  • Foxboro PO911SM High-performance digital/analog input/output module
  • Foxboro P0972PP-NCNI Network Interface Module
  • FOXBORO P0971QZ controller module
  • FOXBORO P0971DP Thermal resistance input/output module
  • FOXBORO P0970VB Cable connector
  • FOXBORO P0970EJ-DNBX Dual-node bus expansion module
  • FOXBORO P0970BP Redundant power supply system
  • FOXBORO P0970BC-DNBI DeviceNet bus interface module
  • FOXBORO P0961FX-CP60S Main control CPU module
  • FOXBORO P0961EF-CP30B Network Interface Unit
  • FOXBORO P0961CA Optical fiber local area network module
  • FOXBORO P0961BD-GW30B gateway processor module
  • FOXBORO P0961BC-CP40B/I/A Series high-performance control processor module
  • FOXBORO P0960JA-CP40 High-performance control processor
  • FOXBORO P0926TM Control module
  • FOXBORO P0916BX Termination Assembly
  • FOXBORO P0916AE P0916AG P0916AW Thermal resistance input type DCS card module
  • FOXBORO P0916AC FOXBORO distributed control system (DCS) compression terminal assembly
  • FOXBORO P0912CB High-performance interface module
  • FOXBORO P0911VJ Thermal resistance input output module
  • FOXBORO P0911QH-A High-precision module
  • FOXBORO P0911QB-C P0911QC-C Thermal resistance input/output module
  • FOXBORO P0904BH P0904FH P0904HB Distributed Control system (DCS) module
  • FOXBORO P0903ZP P0903ZQ Embedded System Debugging Module
  • Foxboro P0903ZL P0903ZN Industrial power module
  • Foxboro P0903ZE I/A Series Fieldbus Isolator Module
  • FOXBORO P0903NW Industrial Control Module
  • FFOXBORO P0903NQ Industrial power module
  • FFOXBORO P0903AA Control Module
  • FOXBORO P0400DL Digital output module
  • FOXBORO P0400BJ Digital output module
  • FOXBORO GW30 industrial control module
  • FOXBORO FBM231 Communication Output Module
  • FOXBORO Fieldbus Communications Module, FCM10Ef
  • FOXBORO Fieldbus Communications Module, FCM10E