DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

Woodward 85018V1 Turbine Control Parameters

From:Woodward | Author:yang | Time :2026-01-14 | 65 Browse: | Share:

these channels, the speed/ load controller can be manipulated by another

controller, the cascade controller. The cascade controller is ‘cascaded’ into the

speed controller, whereby the speed controller setpoint is changed directly by the

cascade controller output. The auxiliary controller can act as either a control

channel or as a limiting channel. All three of these PID controllers have the

option of utilizing an analog input signal to remotely position their setpoints.

Additional features of the 505E include frequency control, isochronous

loadsharing, critical speed avoidance, idle/rated control, and an automatic start

sequence. There are two serial communications ports which can be used to

monitor and control the turbine using Modbus protocol.

Extraction Turbines

The 505E control can be configured to operate single automatic extraction

turbines by controlling the interaction of the governor (HP or high pressure) valve

and the extraction (LP or low pressure) valve. (The 505E can also operate the

governor valve and the first extraction valve of multiple extraction turbines).

Single automatic extraction turbines have a high pressure stage and a low

pressure stage, each controlled by a valve. Steam enters the turbine through the

HP valve (see Figure 1-2). At the downstream end of the HP turbine stage and

before the LP valve, steam can be extracted. The LP valve controls the entry of

steam into the LP turbine stage, and the diverting of steam through the extraction

line. As the LP valve is opened, more steam enters the LP stage and less is

extracted.

In most cases, the operator of an extraction turbine needs to maintain both

turbine speed/ load and extraction pressure/flow at constant levels. Changing the

position of either the HP valve or the LP valve affects both turbine speed/load

and extraction. If either the load on the turbine or the extraction demand

changes, both the

Admission Turbines

The 505E control can be configured to operate single automatic admission

turbines by controlling the interaction of the governor (HP or high pressure) valve

and the extraction (LP or low pressure) valve.

Single automatic admission turbines have a high pressure stage and a low

pressure stage, each controlled by a valve.  Steam enters the turbine through the

HP valve (see Figure 1-3) and at the downstream end of the HP turbine stage,

before the LP valve.  The LP valve controls the entry of steam into the LP turbine

stage and through the admission line.  As the LP valve is opened, more steam

enters the LP stage.

In most cases, the operator of an admission turbine needs to maintain both

turbine speed/ load and admission pressure/flow at constant levels.  Changing the

position of either the HP valve or the LP valve affects both turbine speed/load

and admission.  If either the load on the turbine or the admission demand

changes, both the HP valve position and the LP valve position must be changed

to maintain speed/load and admission.

The movement of both valves is automatically calculated by the 505E’s ratioing

logic based on the turbine performance parameters to minimize valve/process

interaction.

Extraction and Admission Turbines

The 505E control can be configured to operate single automatic extraction and

admission turbines by controlling the interaction of the governor (HP or high

pressure) valve and the extraction (LP or low pressure) valve.

Single automatic extraction and admission turbines have a high pressure stage

and a low pressure stage, each controlled by a valve.  Steam enters the turbine

through the HP valve (see Figure 1-2).  At the downstream end of the HP turbine

stage and before the LP valve, steam can either be extracted or admitted

(inducted) into the LP turbine stage.  The LP valve controls the entry of steam into

the LP turbine stage.  As the LP valve is opened, more steam enters the LP stage

and less is extracted.

In most cases, the operator of an extraction turbine needs to maintain both

turbine speed/ load and extraction or admission pressure/flow at constant levels.

Changing the position of either the HP valve or the LP valve affects both turbine

speed/load and extraction or admission.  If either the load on the turbine or the

extraction / admission demand changes, both the HP valve position and the LP

valve position must be changed to maintain speed/ load and extraction/

admission.  The movement of both valves is automatically calculated by the

505E’s ratioing logic based on the turbine performance parameters to minimize

valve/process interaction.

Speed Control

The speed control receives a turbine speed signal from one or two magnetic

pickups or proximity probes.  The speed PID (proportional, integral, derivative)

control amplifier then compares this signal to the speed setpoint to generate an

output signal to the ratio/ limiter (through a low signal select bus).



  • YASKAWA JAMSC-B1063 MEMOCON-SC I/O MODULE
  • Yaskawa JAMSC-B1050 Memocon-SC Output Module
  • YASKAWA JACP-317802 AC Servo Driver
  • Yaskawa JACP-317801 Digital Input Module
  • Yaskawa JACP-317120 PLC Power Supply Module (PS-01)
  • Yaskawa CP-9200SH/SVA High-Performance Motion Control System
  • Yaskawa CP-9200SH/CPU Integrated Controller
  • Yaskawa CP-317/DO-01 Digital Output Module
  • Yaskawa CP-317/218IF High-Speed System Controller
  • Yaskawa CP-317/217IF Integrated Controller
  • Yaskawa CIMR-M5D2018 VS-626M5 Spindle Inverter
  • Yaskawa CACR-HR10BB Multi-Function Position Controller
  • Woodward 8440-2052 easYgen-3200-5/P2 Genset Controller
  • Woodward PEAK200-HVAC 8200-1501 Digital Control for Steam Turbines
  • Woodward 8237-1369 Speed protection
  • Woodward 2301D 8273-140 Load Sharing and Speed Control Module
  • WOODWARD BUM60 3522-1004 Motor drive and control components
  • WOODWARD 8901-457 Current-Pressure (I/P) Converter
  • WOODWARD 5501-465 Power board
  • WOODWARD 5448-890 SPM-D10 Series One Breaker Synchronizer
  • WOODWARD 5437-1067A Reliability Independent Module
  • WOODWARD 8440-1706 A SPM-D11 High-precision digital synchronizer
  • WOODWARD 5453-203 MicroNet 2-Line Display Operator Interface
  • WOODWARD 9907-1106 CPC-II current-pressure converter
  • WOODWARD 5233-2089 Control Unit
  • WOODWARD 9907-147 Over-speed protection system
  • WOODWARD 8237-1600 Speed control safety device
  • WOODWARD 8402-319 8402-119 Digital speed controller
  • WOODWARD 8701-758 5601-1126 Used in digital speed control systems and turbine governors
  • WOODWARD 8237-1006 High-reliability controller
  • FOXBORO 43AP-FA42D/PB-AA 43AP Pneumatic Indicating Controllers
  • Fisher 4660 5-95PSI High-Low Pressure Pilot
  • Stucke Elektronik SYMAP®BCG Power Management and protection device
  • Stucke Elektronik SYMAP®BC protection device
  • Stucke Elektronik SYMAP®BAT battery applications (hybrid energy sources)
  • Stucke Elektronik SYMAP®DC DC protection
  • Stucke Elektronik SYMAP®LD line differential protection
  • Stucke Elektronik SYMAP®T transformer protection
  • Stucke Elektronik SYMAP®M motor protection
  • Stucke Elektronik SYMAP®G generator protection
  • Stucke Elektronik SYMAP®F feeder protection
  • Stucke Elektronik SYMAP®ECG engine control and generator protection
  • Stucke Elektronik SYMAP®EC Engine Control
  • Stucke Elektronik SYMAP®ARC Arc protection system
  • Stucke Elektronik SYMAP®R Digital protection system
  • Stucke Elektronik SYMAP® Compact Digital protection and control equipment
  • WOODWARD 9907-165 Digital Speed Control
  • WOODWARD MicroNet HD Combo Modules 5466‐253 and 5466‐316
  • WOODWARD Load Sharing Module 0.5–4.5 Vdc Output 9907-252
  • WOODWARD 5464-414 Analog Input/Output Combination Module
  • METSO IOP303 I/O processor / communication gateway module
  • METSO S422737 Analog Output Board (AO Module)
  • METSO S420071 Distributed I/O Interface Card / Process Bus Board
  • METSO S420154 I/O BACKPLANE IOB (I/O Backplane)
  • METSO A413345 Power Supply / Filter / Distribution Board
  • METSO A413177 Industrial Control Module
  • METSO A413222 I/O Interface / Channel Board
  • METSO D100532 Bus Interface / Connection Module
  • METSO A413313 Valmet Module
  • METSO A413310 PLC control module
  • METSO A413659 Compact module
  • METSO D100314 Bus Buffer / Bus Interface Module
  • METSO A413665 Active Control Unit (ACU) / Processor Module
  • METSO A413325 Rack module
  • METSO A413654 Central Control Module / NCU2 Processor Board
  • METSO A413110 PCB Card / Interface Board
  • METSO A413160 Pneumatic relay module
  • METSO A413144 plc control module
  • METSO A413152 High-performance pneumatic relay
  • METSO A413146 Electronic communication and control board
  • METSO A413240A Printed Circuit Board Assembly
  • METSO A413150 Controller board
  • METSO A413140 Controller board
  • METSO A413111 Potentiometer Feedback Board / Sensor Unit
  • METSO D100308 Solenoid Pilot Valve / Integrated Manifold Card
  • METSO D201925 SPDT (Single Pole Double Throw) or Inductive Proximity
  • LEYBELOD SV40 BI Single-stage, oil-sealed rotary vane pump
  • LEYBELOD PR25 Penning meter
  • LEYBELOD CM330 Vacuum gauge controller
  • LEYBELOD 850-400-G1 Multi-channel vacuum gauge controller
  • LEYBELOD TURBOVAC 361 (C) ClassicLine Mechanical rotor suspension turbomolecular pump
  • Lenze DDLS 200/200.2-50-M12 50125768 Optical data transmission
  • Lenze EPZ-10203 Hardware expansion board
  • Lenze EPL10200 High-function drive PLC unit
  • Lenze EPL-10200-XX Industrial displays/panels
  • Lenze E84AVSCE1534VX0 The StateLine version in the 8400 series
  • Lenze EVF8212-E Variable Frequency Drive
  • LENZE EA-4/10 Signal conversion module or analog quantity regulation board
  • LENZE BG10 Bridge rectifier
  • LENRZ L5311 Power Supply Module
  • LASERGAS 12944-E Main Electronic Circuit Board / Processor Set
  • LANTRONIX 080-332-000-R Ethernet device server
  • LAND M2300/1100C-V Industrial Control Module
  • LAMBDA LZS-A1500-3-001 POWER SUPPLY
  • LAMBDA LZS-1500-3 Single Output Industrial Power Supplies
  • LAMBDA HWS1500-24 Power supply
  • LAM CPU processor board 810-017034-005
  • GE SEPA36AI0150 Circuit breaker
  • LAM 810-069751-114 RF/DC interface board
  • LAM 810-072907-005 VME Communication and Clock Controller board
  • LAM 810-068158-014 high precision interface board
  • LAM 810-800081-018 Industrial Automation Control Module
  • LAM 810-800081-022 high performance control module
  • LAM 810-068158-013 High Precision Semiconductor Process Module
  • LAM 810-801237-021 Control and signal processing module
  • LAM 810-073479-215 High Precision Industrial Drive Module
  • LAM 853-001983-110 Semiconductor Wafer Processing Components
  • LAETUS LLS570-05 Dual End Transmitter and Receiver
  • KUKA 00-117-336 DSE-IBS-C33 Multi-functional card
  • KUKA kk67y-yyyy–050 Robot AC Servo Motor
  • KUKA RDW2 Resolver Digital Converter
  • KUKA Low-voltage power unit PSU PH1003-2840
  • KUKA MFC2 Multi-Functional Control Board
  • KUKA KSD1-08 Servo Drive KSD
  • KUKA KRC2/VKRC2 Industrial Robot Controller
  • 00-130-547 KCP2 KUKA Teach Pendant Controller
  • KUKA E93DE143-4B531LP Robot control module
  • KUKA DSE-IBS 3.02 Key electronic components
  • KUKA 1FK6081-6AF71-1ZZ9-Z Servo motor
  • Kollmorgen CB06560 PRD-B040SAIB-62 Digital servo amplifier
  • Kollmorgen Digital servo driver SERVOSTAR 310
  • Kollmorgen S20330-SRS S200 servo drive
  • Kollmorgen S200 series servo drive unit S22460-SRS
  • Kollmorgen S700 series digital servo drives S70602-NANANA
  • Kollmorgen Traditional digital servo amplifier BJRL-20012-110001
  • Kollmorgen Servo driver SAM-DA-400-07B-P4N-F
  • Kollmorgen CP320260 High-performance Servostar SP (Smart Power) servo driver
  • Kollmorgen E33NRHA-LNN-NS-00 High-performance NEMA 34 hybrid stepping motor