DCS; Industrial control system
NameDescriptionContent
NEW CENTER
Current Location:

DOOSANDOOSAN AC SERVO MOTOR/DRIVE VISION DVSC - TM Series

From:DOOSAN | Author:LIAO | Time :2025-08-15 | 445 Browse: | Share:

Installation and wiring 

1.1. Designations 

Designations of DOOSAN AC Servo Motor and Drive are as follows.

Please refer to this section for system installation and after service.

1)Encoder Connector 2)Power Connector 3)Name Plate 4)Shaft 5 )Flange 6 )Frame 7 )Encoder

1.2. Environmental conditions 

This product was designed for indoor usage.

Caution : If used in different circumstances and environment other than stated below, damages 

may occur.

Please use under the following conditions.

1.3. Installation method 

1.3.1. Assembling of the servo motor

▷ Warning: While assembling the servo motor, avoid dropping it.

▷ Caution: While mounting the servo motor horizontally, the connector should be assembled

facing downward.

▷ The servo motor can be mounted horizontally or vertically.

▷ To prevent vibrations and extend the life of coupling and bearing, the motor shaft and the loading

shaft should be precisely aligned. Use flexible coupling when connecting directly to the load.

① The outer part of the coupling should be measured at four equidistant points each 90˚ apart,

and the gap between the maximum and the minimum readings should not exceed 0.03㎜.

② The center point of the motor and the loading shaft should be precisely aligned.

▷ Avoid excessive radial and thrust load to the motor shaft and also avoid impact that is more

than 10G when mounting the gear, coupling, pulley and etc. at the same time.

▷ A minus load means continuous operation in the regenerative braking state, when the motor is

rotated by load. The regenerative braking capacity of the servo drive is short term rated

specification equivalent to stop time of the motor. Thus, it should not be used in minus load that

generates continuous regenerative braking.

ex) Servo system for descending objects(without counterweight)

▷ The admissible load inertia into the motor shaft is within 5 times than the inertia of applied servo

motor. If it exceeds this, during deceleration it may cause regenerative malfunction.

The following steps should be taken if the load inertia exceeds more than 5 times the inertia of

the servo motor.

- Reduce the current limit. – Decelerate slowly.(Slow Down)

- Lower the maximum speed in use.

1.3.2. Mounting of the servo drive

▷ Warning: To prevent electric shock, turn off the power while mounting or uninstalling.

▷ While installing the panel, the size of the panel, cooling and wiring should be considered in

order to maintain a difference of temperature below 5℃ between the panel temperature and the

surrounding temperature in accordance with heat value of the equipment and box size.

▷ If a heating element is placed nearby, the surrounding temperature of the servo drive should be

maintained below 55℃ at all cases despite temperature rise by convection and radiation. Use a

fan to ventilate sealed inner air, and proper ventilation should be used for convection of the air.

▷ If a vibrating element is placed nearby, the drive should be mounted on shock absorbing surface.

▷ If the servo drive be exposed to corrosive gas for a long time, may cause damages to connecting

devices such as relay and circuit breaker, thus it should be avoided.

▷ Environmental conditions such as high temperature, high humidity, excessive dust and metal

particles should be avoided.

◆ Mounting method

▷ There should be a space wider than 100㎜ below and above the servo drive.

▷ There should be a space wider than 30㎜ on both sides of the servo drive.

▷ Mount the servo drive vertically. Do not use if it is mounted horizontally.

1.4. Wiring 

▶ For signal lines and encoder lines, use twisted lines or multi-core shielded twisted-pair lines.

The length for command input lines should be maximum 3m, and the encoder line should be

maximum 10m or less.

Wiring must be done in shortest distance and the remaining length should be cut.

▶ The ground circuit should be a thick line. Usage of third-class grounding or above (ground

resistance 100Ω or less) is recommended. Also, make sure to ground at one-point grounding.

▶ The following precautions should be taken to avoid malfunction due to noise.

- The noise filter should be placed as near as possible.

- Mount a surge absorber to the coil of the relay, electromagnetic contacts, solenoids and etc.

- The power line (AC input, motor input line) and the signal line should be placed 30㎝ apart

or more. Do not put them into the same duct or tie them in a bundle.

- If the power source of the servo drive is used in common with an electric welder or electrical

discharge machine, or a high-frequency noise source is present, attach noise filter to the

power or the input circuits.

- Since the core wire of the signal line cable is as thin as only 0.2 ~ 0.3㎟, excessive force to the

line should be avoided to prevent damages.

1.5. Noise treatment 

For wiring and grounding of the servo drive, the effect of switching noise which is generated by the

built-in IPM should be reduced as much as possible. Unexpected effect by outside noise should be

reduced as much as possible.

▶ Grounding method

The servo drive supplies power to the motor according to the switching of the IPM device.

Thus the Cf dv/dt current flows from the power component to the floating capacity of the motor.

  • IS210BPPBH2BMD Redundant Power Supply Module for Mark VIe Turbine Control
  • 369-HI-0-M-0-0-0-E 369 Motor Management Relay
  • S739DVT Digital Valve Trip Module
  • 369-HI-R-M-F-E-H-E Motor Management Relay
  • 489-P5-HI-A20-E Multilin Relays
  • PC Card CIFX 50-CO – PCI
  • PC000087524/01 Power module
  • SR469-P5-H-A20-T Multi-Function Motor Protection Relay
  • WES5120 2340-21005 On site controller main station unit
  • WES5120 2340-21003 Analog output module
  • Alstom IRVI20 - REGULATION INTERFACE BOARD
  • ABB DRIVEMONITOR VERSION 4000 DRIVE MODULE RBOX316-ABB-00
  • D20MIC10BASE-T 820-0756 Network card
  • WES13-3 5167-0001-0210 CPU/Auxiliary Control board
  • WES13-3 2508-21001 Embedded digital module
  • D20ME 526-2005-216943 control module
  • D20EME 0526-21170-1 Enhanced Master Communications Module for D20 Substation RTUs
  • 2400-21004 / 2010-3101-0442 – Redundant Power Supply Module for Mark VIe Turbine Control
  • PACSystems™ IC695CPE400 RX3i 64 MB
  • DS200DCFBG2BNC DC2000 DC Feedback Board
  • OLDI Ethernet interface module 56SAM-844
  • IS200BPPBH2CAA Mark VIe Power Supply Module
  • IS210MACCH2AEG Motor Control and Communication Module
  • IS210MACCH2AGG Mark VIe Speedtronic Turbine Control Module
  • IS200AEPAH1AFD Printed circuit board
  • IS200AEPAH1ACB Analog I/O Module
  • IS200WREAS1ADB AERO TRIP TB DBRD sub-board
  • IS200WETAH1AEC large board component made Mark VI system
  • IS200AEPAH1AHD A High-Precision Excitation Control Board for Turbine Systems
  • IS200WEMAH1AEA Control board
  • IS210MACCH1AGG processor card
  • IS230TNRLH1B Discrete Output Modular Assembly
  • Mark V Series DS200PCCAG1ACB PCB Power Connect Card
  • DS200SI0CG1AEA Instantaneous overcurrent card
  • DS200SHVMG1AGE Analog I/O board
  • DS200SI0CG1A6A Input/Output Module
  • DS200SHVMG1AFE SCR High Voltage Interface Board
  • DS200RT8AG3AHC Relay Output Terminal Board
  • DS200FSAAG1ABA PCB Field Supply Gate Amplifier Board
  • 531X307LTBAFG1 F31X307LTBA LAN I/O Terminal Board
  • ABB AFS670 19" Ruggedized Switch AFS670-EREEDDDSSEEEEEEEPZYX05.1.0
  • NI Controller for VXI VXIPC-871B
  • IS200EPMCH1GE Mark VIe Patch Cord Power Distribution Card
  • VMICPCI-7632-03310 IS215UCCAH3A 350-657362-003310J GE gas turbine system control processor board
  • WEA13-13 2508-21001 Control Module / I/O Board
  • WES5120 2340-21004 Controller Main Module
  • WES5120 2340-21006 Field Controller Master Unit Module
  • ​ WESDAC D20ME 18-MAR-13 Excitation Control Module
  • D20 EME 2400-21004 Ethernet communication and expansion module
  • GE DS3800XTFP1E1C Thyristor Fan Out Board Brand
  • GE SR745-W2-P1-G1-HI-A-L-R-E Feeder protection relay
  • GE IS230TNDSH2A Discrete Output Relay Module Brand
  • GE Fanuc IS200TDBSH2ACC Mark VI Terminal Board Brand
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE VMIVME-1150 Serial Communications Controller
  • GE VMIVME-5576 Fiber-Optic Reflective Memory with Interrupts
  • GE VMIC Isolated Digital Output VMIVME-2170A
  • GE MULTILIN 760 FEEDER MANAGEMENT RELAY 760-P5-G5-S5-HI-A20-R-E
  • GE IS200AEPAH1BKE IS215WEPAH2BB Printed circuit board
  • GE IS210BPPCH1A Mark VIe I/O Pack Processor Card
  • GE IS220PRTDH1A 336A4940CSP6 High-Performance RTD Input Module
  • GE IS220PDIAH1BE 336A5026ADP4 Discrete Input Module
  • GE IS420ESWBH3A IONET Switch Module
  • GE 516TX 336A4940DNP516TX 16-port Ethernet switch
  • GE EVMECNTM13 Embedded control module
  • GE EVPBDP0001 EVPBDP032 control module
  • GE Hydran M2-X Enhanced Monitoring with Extended Sensor Life
  • GE UR6CH Digital I/O Module
  • GE IC695CPU315-CD Central processing unit
  • GE 531X305NTBAMG1 DR Terminal Board
  • GE 531X305NTBALG1 NTB/3TB Terminal Board 531X Series
  • GE 531X305NTBAJG1 NTB/3TB Terminal Board.
  • GE 531X305NTBAHG1 NTB/3TB Terminal Board 531X
  • GE 531X305NTBAEG1 is a PCB that functions as a DR terminal board.
  • General Electric 531X305NTBACG1 NTB/3TB Terminal Board 531X
  • GE Digital Energy D20 Analog Input Module
  • GE 94-164136-001 main board Control board
  • GE 269 PLUS-D/O-100P-125V Digital motor relay
  • GALIL DMC-9940 High-performance motion controller
  • FUJI NP1BS-08 base plate
  • FUJI NP1Y32T09P1 Transistor drain type digital output module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1X3206-A High-speed digital input module
  • FUJI NP1AYH4I-MR current output module
  • FUJI NP1S-22 Power module redundancy
  • FUJI RPXD2150-1T servo drive module
  • FUJI FVR008E7S-2UX Ac frequency converter
  • FUJI Ac frequency converter FVR008E7S-2
  • FUJI FVR004G5B-2 Small general-purpose frequency converter
  • FUJI A50L-2001-0232 Industrial control module
  • FUJI A50L-001-0266#N High-performance servo amplifier
  • Honeywell FS7-2173-2RP Gas sensor
  • Honeywell 10106/2/1 Digital Input Module in Stock
  • FRCE SYS68K CPU-40 B/16 PLC core processor module
  • Foxboro FBM I/O cards PBCO-D8-009
  • Foxboro AD916AE Digital Control System (DCS) Module
  • GE SR750-P5-G5-S5-HI-A20-R-E Multilin Relay
  • FOXBORO H90 H90C9AA0117S Industrial Computer Workstation
  • FOXBORO RH928AW | I/A Series Relay Output Module
  • Foxboro N-2AX+DIO Multi-functional input/output module
  • Foxboro RH924WA FCP280 Fiber Optic Network Adapter
  • FOXBORO H92 Versatile Hardware Component In
  • Foxboro FBM218 P0922VW HART® Communication Redundant Output Interface Module
  • Foxboro E69F-TI2-J-R-S E69F Series Current-To-Pneumatic Signal Converter
  • Foxboro E69F-BI2-S Converter
  • Foxboro H92A049E0700 The host of the DCS control station
  • Foxboro H90C9AA0117S Industrial computer workstation
  • Foxboro RH101AA High-performance industrial control module
  • Foxboro P0922YU FPS400-24 I/A Series Power supply
  • FOXBORO P0973LN Chassis-based managed switch with independent power supply
  • FOXBORO P0926PA Input/output module
  • Fanuc A06B-6050-H402 3 AXIS ANALOG AC SERVO DRIVE
  • FOXBORO L0130AD L0130AE-0H Power module group
  • FOXBORO 0399085B 0303440C+0303458A Combination Control Module
  • FOXBORO SY-0399095E (SY-0303451D+SY-0303460E) Process control board
  • FOXBORO 0399071D 0303440C+0303443B Input/Output (I/O) Module
  • FOXBORO RH924UQ Redundant Controller module
  • FFOXBORO E69F-TI2-S current pneumatic converter
  • FOXBORO FBM219 RH916RH Discrete I/O Module
  • FOXBORO FBM227 P0927AC Module
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E I/O module
  • FOXBORO SY-60399001R SY-60301001RB Industrial Control Module
  • FOXBORO 0399143 SY-0301060R SY-1025115C SY-1025120E Combined control board
  • FOXBORO 873EC-JIPFGZ electrodeless conductivity analyzer
  • FOXBORO P0916PH (High-density HART I/O Module)
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitters
  • FOXBORO Compact FBM240. Redundant with Readback, Discrete